

CCUS and Low Carbon Fuels

11 – 12 March 2025 | Tokyo, Japan

Regional CCS Enabler? - Direct Injection of CO2 from Vessels into Offshore Reservoirs

Stephen Stokes Wood plc

Japan

wood

UK and Europe

North America

South East Asia

Middle East

We are supporting live CCS projects in all regions at various stages of development.

- CO2 injection projects
- CCS hub developments
- CO2 gathering networks
- Liquid CO2 value chains
- Legacy asset repurposing
- etc

- Drives excellence in the execution and delivery of CCS projects world-wide
- Brings insights and best practice from CCS projects being developed globally

Presenter

- Energy transition manager, global head of CO2 transport and storage
- 24+ years' of experience North Sea and WA based
- Background in field development, flow assurance and subsea systems
- Author and presenter of several CO2 transport industry papers
- Member of SA committee EE-002, Working Group 2 (CO2 ISO/TC265 standards)

200+ CCS studies

experience in this space.

40+ years

completed across the globe.

Emerging cross-border CO2 networks

Alternative strategy – 'direct' injection

✓ drivers

- Reduce threshold (\$/tCO2) bypass import 'buffer' storage and offshore pipelines
- **Open new markets** significantly reduce value chain cost
- **Decentralisation** align emitters (sources) to storage
- Versatility emitters can potentially access multiple reservoirs
- Flexibility prove up storage 🗧 and then scale (

? considerations

- Batch (stop / start) injection operation without onshore intermediate 'buffer' storage and constant CO2 supply
- Offshore offloading marine operations, floating systems, water depth, metocean, no jetty / port infrastructure

Case Study

Japan emitter(s) – export to Australia (3,600 nautical miles)

- Port to port, existing jetties, access to power etc.
- 0.95 MTPA CO2
- Low Pressure (LP) LCO2 ships (7 bar, -46°C), CO2 density 1,150 kg/m³
 - LP selected for scale, MP and EP can be considered also
 - 40,000 m³ capacity, 14 knots
- Offshore storage
 - Case assumes re-use of existing legacy hydrocarbon facilities

Ref. Tenet Petrochemical DMCC

#1 - Export

Ref. https://doi.org/10.1016/j.ijggc.2012.11.008

Building Blocks

#2 - Shipping

Ref. Upstream Engineering, LLC

#3 - Injection

\$ COST vs. RISK

Ref. ResourceWatch

Methodology

Through the evaluation of multiple configurations, users can quickly highlight the most viable and sustainable solutions for their CCS development.

- Innovative concept analysis tool
- Create bespoke CCS value chains
- Report Class V (screening) level CAPEX & OPEX
- Calculate CO2 footprint for various Hub Development scenarios.

Rapidly assess a wide array of CCUS Hub Development Concepts, producing robust technical definition and costing information for CCUS value chains validated by 40+ years of experience in the CCUS industry.

CCXpert[™] for evaluating CCUS value chain options

Building Block #1 - Export

3 rd party Emitter source and capture	Export Terminal (liquefaction, storage, loading)	
Out of scope	 CO2 gas feed from emitter(s) Closed loop liquefaction process 	
	 4 x 30m diameter spheres SuperElso SA533 122% buffer ~3.7 days rundown @ 1 MTPA 	
	 Loading pumps BOG management system LCO2 and vapour return lines Marine loading arms Jetty modifications Fiscal metering 	

Component	CAPEX MMUSD
Storage	
Jetty Modifications	
Piping	
Process, Utilities	

MMUSD (including indirects & contingency)

Building Block #2 - Shipping

Shipping Logistics Assessment

Data [0.95 MPTA, LP SHIPMENT]	Unit	TO IMPORT TERMINAL	DIRECT INJECTION
Input Data			
Ship Storage Capacity (Working)	m ³	36,400	
Ship Availability	-	95	6%
Loading Rate (at Export Terminal)	m³/hr	4,250	
Loading Rate (at Import Location)	m³/hr	4,250	400
Calculations			
Average CO ₂ Transported per day	m3/day	2,382	
Shipment Roundtrip Duration (Sum)	days	21.5	25.2
Entry, loading at exit export terminal	hours	(17.4)	
Transit time to import	hours	(240.0)	
Entry, Unloading and Exit at Import Location	hours	(17.4)	(108.0)
Transit time to export	hours	(240.0)	
Feasible Roundtrips per Vessel	-	16.2	13.7
Required Trips	-	22	
No. of CO ₂ Carriers Required	-	2	2
Carrier Utilisation	-	68%	80%
Export Loading Occupancy	-	4%	
Import Unloading Occupancy	-	4%	30%

Carrier(s)

- 2 x 40,000 m³ LCO2 Carriers
- Type-C storage (LP)

Logistics (to terminal):

- 0.7 days load/unload
- 21 days roundtrip
- 68% utilization

Logistics (direct to well):

- 4.5 days unload
- 25 days roundtrip
- 80% utilization

MMUSD

(including indirects, insurance & owner's costs)

Building Block #3A Import (Conventional)

Ref. spectra.mhi.com

Component	CAPEX MMUSD	
Storage		
Jetty Modifications		
Piping		
Process, Utilities		

MMUSD (including indirects & contingency)

	Import Terminal (offloading, storage, compression, heating)	3 rd party Offshore pipeline and injection facility
nshore orage	 Unloading pumps BOG management system LCO2 and vapour return lines Marine loading arms Jetty modifications 	Out of scope
64%	 6 x 26m diameter spheres SuperElso SA533 121% buffer ~3.6 days rundown 	
	 Pump (to pipeline pressure) Heater (to pipeline inlet) Fiscal metering 	

Building Block 3B – Direct Injection

Export Terminal Shipping Import Terminal Tower Loading Unit Indirects, Contingency

Conventional Import Terminal

- Case study excludes new pipeline (\$\$\$)
- Pipeline qualification for re-use (hidden costs)
- Schedule storage on critical path
- Access to 3rd party pipeline capacity constraints, reliance on other emitter agreements for commercial approval
- Pipeline access tarriffs
- Terminal land planning / title / approvals
- Jetty use / port congestion
 - shipping channels, dredging, demurrage
 - Berth occupancy sim. ops (LNG etc)

Risk

- Batch (intermittent) injection –
 pressure / thermal cycling on wells –
 integrity issue
- Marine operations, weather, metocean - disconnect philosophy
- High ship utilization (80%)
 - Long offload constrained by well injection rate (4.5 days to well vs. 17 hrs to storage)
 - May need +1 well
 - May need +1 ship (show-stopper!)

Risk Focus - Batch Operation

Wood: batch Injection schedule, 2 Carriers

- Thermal recovery between injection cycles expansion or contraction of casings and well barrier materials, which can cause them to crack or debond at interfaces
- Pressure cycling of the injection well, with a risk of formation back-flow in the lower part of the well (corrosion / hydrates risk)
- Integrated transient well <-> near well modelling is critical
 - A surface/well simulation model fully coupled with a reservoir simulation
- Critical factor = the pause between intermittent injection operations. The formation slowly warms the well.
 - Heating CO2 helps, but doesn't mitigate
 - Lower risk scheme is to have minimal pause between offloads

Solutions

How to achieve value and reduce risk?

- Many direct injection ship concepts under consideration:
 - Greensand CO2 vessel
 - Breeze Ship Design / Equinor
 - NEMO Maritime
 - Stella Maris (now Yinsin)
 - etc
- EP transport under assessment as enabler (ambient temperature shipment) – injection, KNCC solution (the next presentation!)
- STARFISH (Europe):
 - Dual buoy concept to floating injection unit
 - For continuous injection, the inbound vessel connects before the outbound vessel disconnects (CO2 and power)

https://www.nito.no/contentassets /6e7ba31ea5d9421dbf00b3e9c2f08 374/horing---konsekvensutredninghavstjerne-horingsdokument.pdf

Summary

Direct injection – a regional CCS enabler?

- Business case (\$) appears sound...
- ... but technical risks still need to be reduced to a reasonable level
- Front-end loading (FEL) is vitally important; it is where value is added or lost.
 - Consider direct injection in the list of early concepts under review
 - Carry out economic and technical screening, including non-economic criteria (safety, environment, political, schedule, etc)
- Many technology solutions in development....but beware <u>decision bias!</u>
 - Time and resources invested in a specific technology can create a bias towards using it, even if a better option exists
 - Engage an independent consultant!

Joint industry partnership

Industry guidelines for setting the CO₂ specification for CCUS chains

Internal work packages

Arigatou gozaimasu

Stephen Stokes Wood plc. stephen.stokes@woodplc.com

