

CCUS and Low Carbon Fuels

11 – 12 March 2025 | Tokyo, Japan

CCUS and Low Carbon Fuels

KNCC's view on marine transportation of Liquified CO2

Tomoki Inoue

Knutsen NYK Carbon Carriers AS seconded from NYK Line

Key features of the CCS value chain

Unique approach

✓ All three modes regardless offshore/terminal

Mode	Temperature	Pressure	Scope	Vessel capacity	Tank
EP	0 to 10 degC	34 to 45 bar	TtT, DIO, FSIU	7,500-80,000cbm	LCO2-EP Cargo Tank
MP	-30 to -25 degC	15 to 18 bar	TtT	7,500-20,000cbm	Type-C tank
LP	-50 to -45 degC	6 to 10 bar	TtT	20,000-80,000cbm	Type-C tank

TtT: Terminal to Terminal

DiO: Direct injection Offshore

FSIU: Floating Storage Injection Unit

Cassette

LCO2-EP Vessel Design

- ✓ Design principle based on IGC/CNG
- ✓ Module design Automated serial production
- ✓ Uniform loading/discharging as a system
- ✓ Probability approach for inspection/maintenance
- ✓ No sloshing concerns during offshore operation

CTC (cargo tank cylinder)

Demonstration approach to materialize this concept...

- ✓ Accumulating LCO2-EP handling experience
 - \checkmark Scaled real operation
 - ✓ Effects of impurities (future)
 - Crew training (future)
- ✓ Constructability study with shipyards and suppliers

Proposal for economical value chain based on EP

Proposals standing at CO2 properties

Regulatory approach – battery limit at North Sea

Norwegian Maritime Authority (NMA)

- ✓ DIO Vessel under scope of IMO
- ✓ FSIU depend on HAVTIL stance

DIO: Direct injection Offshore

Norwegian Ocean Industry Authority (HAVTIL)

- ✓ Impact the well safety and integrity under scope of HAVTIL
 - ✓ Flange to Injection pump
 - ✓ Well control

FSIU: Floating Storage Injection Unit

Direct Injection Offshore Experience

- ✓ Offshore EOR experience equivalent to DiO
- \checkmark 5 months operation
 - ✓ Injected 400,000 m3 with 275 bar
 - ✓ 280m water depth

Block Flow Diagram when injection offshore

Mooring - STL and SAL

STL: Submerged Turret Loading

SAL: Single Anchor Loading

STL		SAL
70 - 350m	Water depths	12 – 120m
Hs 4.5	Operational limits (connection)	Hs 4.5 m
Hs 7 m	Operational limits (dis-connection)	Hs 5.5 m
Higher than SAL	Uptime	Lower than STLs
Yes during approach/connection	DPS requirement (fuel consumption)	Always
Buoy & Anchor system	Reuse of equipment	Yes
High	Subsea CAPEX	Low
High	Vessel CAPEX	Low
Proven in O&G	Readiness	Proven in O&G
Yes	KNOT experience	Yes

Summary for DIO concept with LCO2-EP

- ✓ KNCC to cater LP/MP/EP to CCUS market
- ✓ LCO2-EP :
 - ✓ has been developing from design/demonstration
 - ✓ constructability study with shipyards
- $\checkmark\,$ DIO proposal for an optimization
 - ✓ Defined battery limits at North sea
 - ✓ To utilise offshore EOR experience
 - ✓ To combine known technology at Oil&Gas industry