

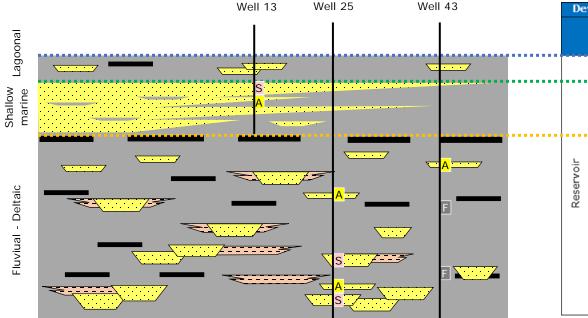
Gas Field Development -Challenges and Current Best Practices to Maximise Value

29 – 30 October 2024 | Ho Chi Minh City, Vietnam

Integrated uncertainty analysis and risk-anticipated field development plan an example of Field 'B', Malay Basin

Kento Kaneko¹, Kyogo Amikawa¹, Dewanto Odeara Kartikasurja¹, W Zuraidah Bt Ahmad², Norlia Bt Azizan², Dr. Shota Yamashita¹

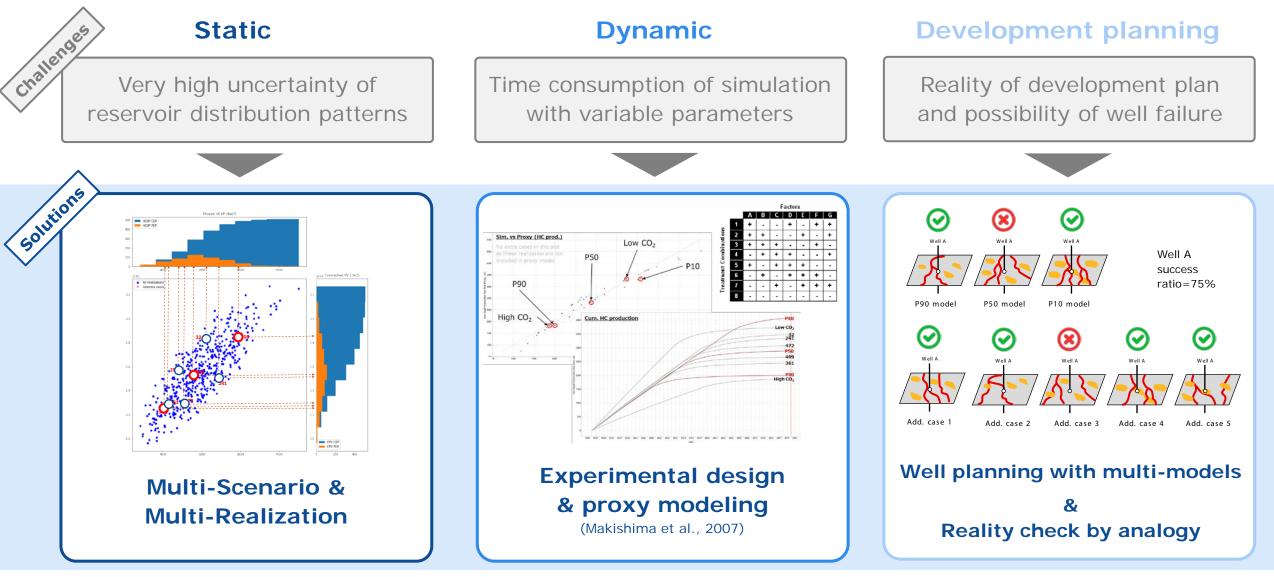
1. JX Nippon Oil and Gas Exploration (BIGST) Sdn. Bhd. 2. PETRONAS Carigali Sdn. Bhd.



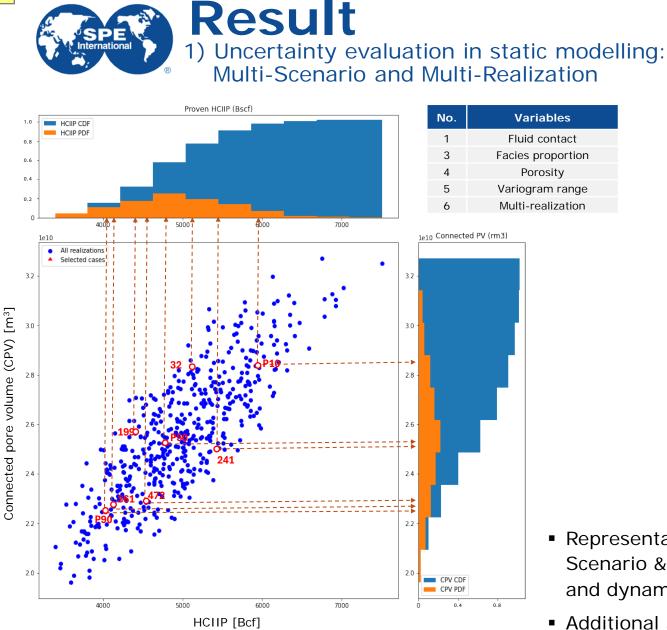
Well completion status in Field 'J', Malay Basin

Dev	/elo	opment phase	1	1	1 1	1	1	3	1	1	1	1 1	1	1	1	1	3	1	1 1	1	1	1 1	1	1	1	3	1	2	2 2	2	2	2	2 3	3 3	3	4	4	4	4 (6 4	4 4	4	4	4	5
		Wells	Well-1		Well-3	Well-4	Well-6	Well-7	Well-8	Well-9	÷.	Well-11	Well-13	Well-14	늰		Well-17	Well-18	Well-19 Well-20		0	Well-23	Well-24	10	i Ņ	Well-28	Well-29	ကို	Well-31	ր տ	Well-34	Well-35	Well-35	n u				Well-42			Well-45	4		Well-49	Well-50
	\$	B-1									/	4																																	
	8	B-2											A																															\Box	
		D-1	S		A					A		SS	ŝS								S						S			?		_	?												
		D-2							A			ŀ	۷	A				S														?													
		D-3							S					S	A		A		S								F					?	F	1											
		D-4																																		A									
· • • •		E-1												S																				F										\square	
.		E-2																																		F			A î	?					
-i		E-3																																S											
2		E-4																																				F		ŀ	4			\Box	
Reservoir	_	E-5								A												4	A A		Α	A																			
Ř	ш	E-6																																			S		F		A				
	Group	E-7			SS					S					S	A			S			5	5		S	S			?		?				S										
	2 C	E-8		F	SF	F A				F	F								F					F									A	<u>۱</u>										\square	
	0	E-9																																						F	F	A			
		E-10				S	1									F				S		S	S		Α		F		?	'															
		E-11																																				A	F		F		A		
		E-12																					A																						
		E-13					S									S				S		S	S		A			?																	
		E-14																																		A							F	S	S

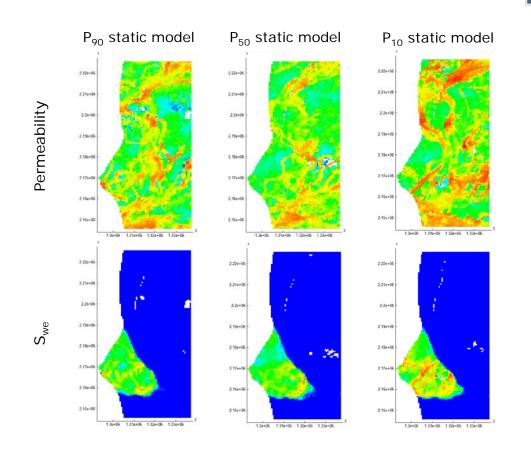
NOTE) General schematic image to explain well result of Field 'J', not reflecting actual reservoir distribution pattern or well alignment


- S: Successfully completed / produced as per plan
- **?**: Produced (plan unknown)
- A: Completed / Produced but not planned (Additional unit)
- F: Planned but Failed to complete / produce
- Highly heterogeneous / channelized multiple-stacking reservoirs in Malay Basin
- Difficult to predict "sweet spots" before (or even after) development
- Low well success: often fail to hit sands, fail to produce
- Crucial to establish a development plan which incorporates risks of well failure
- Key solution: Using multiple (i.e. probabilistic) models efficiently & realistically

Kento Kaneko (JX), Integrated uncertainty analysis and risk-anticipated field development plan: an example of Field 'B', Malay Basin



Methodology Integrated uncertainty analysis workflow



Kento Kaneko (JX), Integrated uncertainty analysis and risk-anticipated field development plan: an example of Field 'B', Malay Basin

Ę

- Representative static model (P₉₀, P₅₀, P₁₀) were chosen via Multi-Scenario & Multi-Realization approach, focusing on both static (HCIIP) and dynamic (CPV from streamline simulation) indexes
- Additional 5 static models were chosen to cover the uncertainty ranges

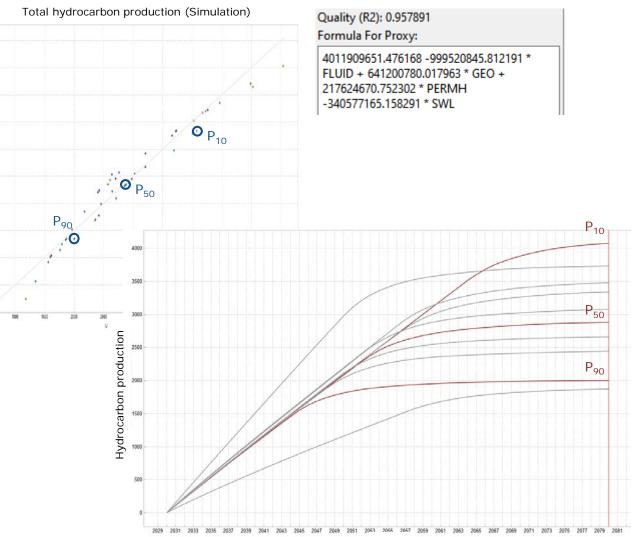
vorkshop

2) Probabilistic dynamic modelling using experimental design

(Proxy model)

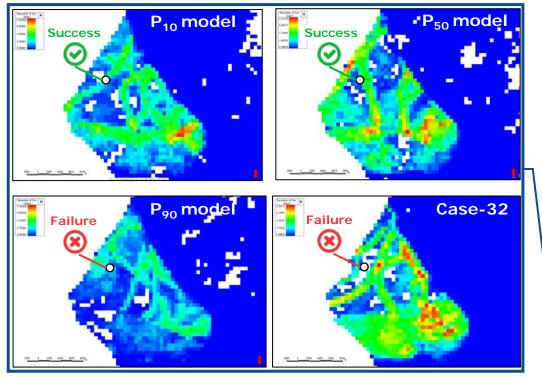
oduction

otal hydrocarbon


No.	Parameters	Low	Base	High
1	Static model	P ₉₀ model	P ₅₀ model	P ₁₀ model
2	Fluid model	Lean-High CO ₂	Base-Base CO ₂	Rich-Low CO ₂
3	Swir	+20%	RQI / Swir coeff.	-20%
4	Permeability	X 0.5	X 1	X 2

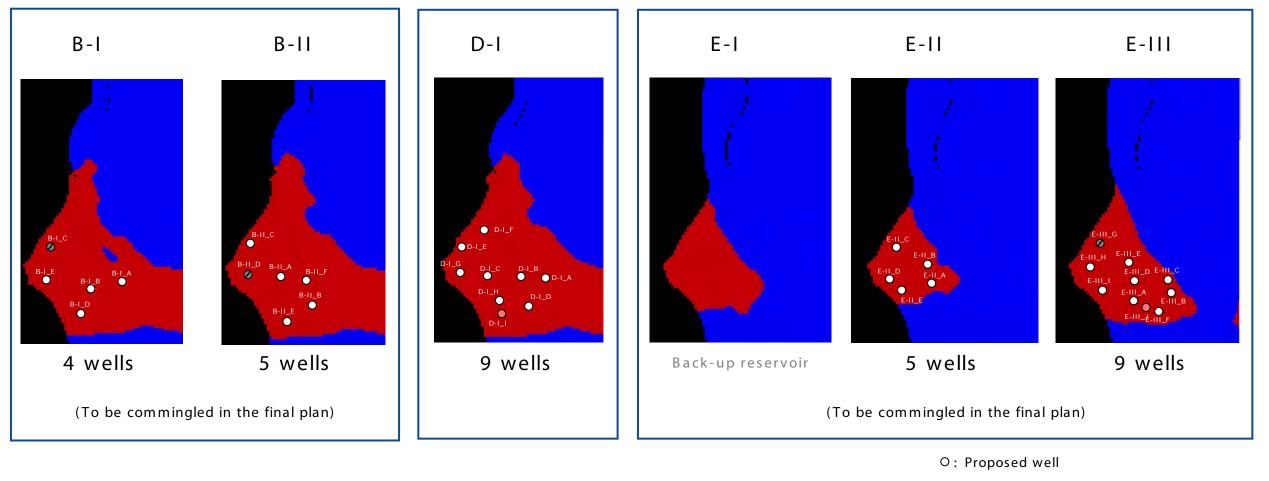
1) Screening dynamic parameters by sensitivity analysis

2) Select test cases by using experimental design (Plackett-Burmann)


Compress number of simulation runs: 3^5 (243) \rightarrow 12

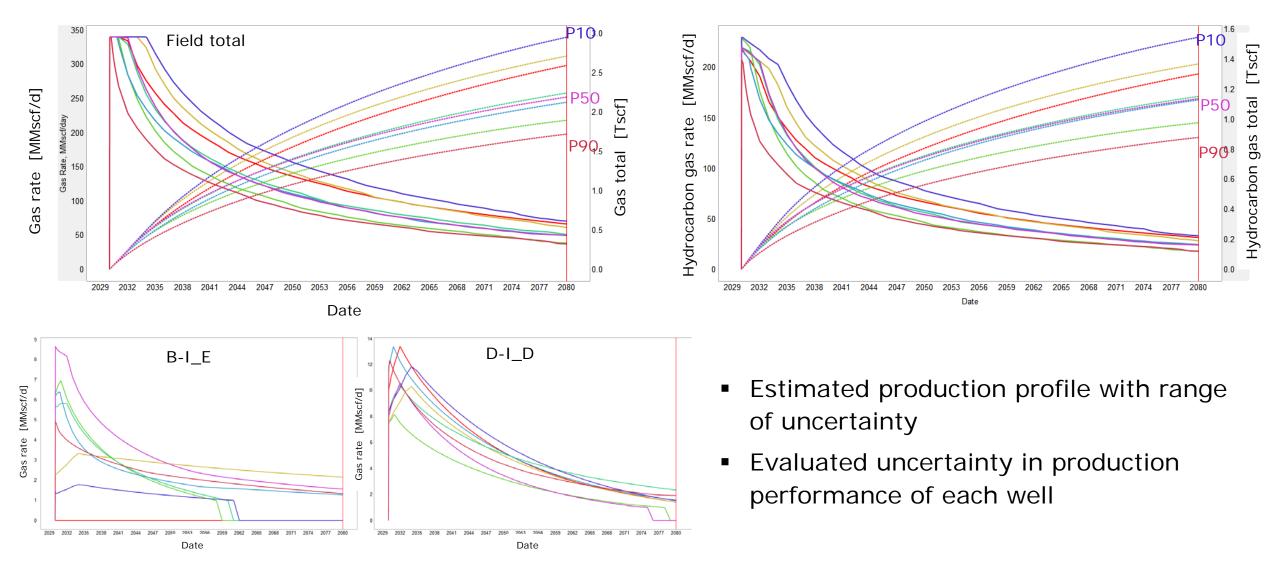
3) Predict P₁₀, P₅₀, P₉₀ values of HC recoverable and select equivalent dynamic models by Monte-Carlo simulations using the proxy model

Sufficient number of wells were proposed based on geological interest, and then dropped if they does NOT meet the following criteria;


- 1) Total production is more than 1.00 Bcf, AND
- 2) 1) is observed more than **50%** chance (>4 models among total 8 models)

					WGPT			Succe	ss ratio				
Res.	Well	P50 model	P10 model	P90 model	Case 32	Case 472	Case 361	Case 241	Case 499	No. of DPs	1		Res.
	B-I_A	0.00	0.00	0.00	12.28	0.00	7.96	15.22	3.89		-	50%	
	B-I_B	15.53	38.25	3.49	15.38	50.09	47.37	1.64	9.51		Re-access to exp well	100%	
B-I	B-I_C	0.00	0.00	8.84	0.00	0.00	0.00	0.00	0.00	4	Dropped	13%	68%
	B-I_D	0.00	111.22	47.92	73.29	9.03	1.86	125.97	21.84		-	88%	
	B-I_E	59.58	7.51	15.74	0.00	28.56	29.94	15.78	31.94		-	88%	
	B-II_A	22.33	0.00	44.69	18.28	33.35	14.20	56.89	44.60		Re-access to exp well	88%	
	B-II_B	40.94	67.01	0.00	60.93	0.00	40.52	57.60	50.19		Re-access to exp well	75%	
B-II	B-II_C	10.74	25.67	0.00	4.42	2.94	0.00	0.00	5.41		-	63%	67%
D-II	B-II_D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	34.51	5	5 Dropped 1	13%	0/%
	B-II_E	18.88	50.93	1.29	87.00	101.61	22.84	34.67	8.28		-	100%	
	B-II_F	37.96	39.85	0.00	0.00	20.03	40.46	9.11	0.01		-	63%	
	D-I_A	33.49	99.96	17.21	115.25	64.96	78.19	104.91	72.63		-	100%	
	D-I_B	95.24	135.04	62.70	92.61	27.65	66.66	103.73	39.98]	-	100%	
	D-I_C	58.21	64.29	67.14	46.22	59.26	58.62	38.32	55.28		Re-access to exp well	100%	
	D-I_D	83.25	122.47	102.72	124.92	120.67	68.39	102.50	110.60		Re-access to exp well	100%	
D-I	D-I_E	61.00	150.04	75.09	91.86	70.34	76.72	99.54	105.06	9	-	100%	100%
	D-I_F	57.36	184.96	105.65	150.46	108.66	132.20	121.77	114.85		-	100%	
	D-I_G	62.16	85.70	52.06	64.74	61.23	105.82	112.76	94.64		-	100%	
	D-I_H	129.96	110.49	42.89	61.31	55.54	100.25	106.68	124.96	-	-	100%	
	D-I_I	-	-	-	-	-	-	-	-		Accelerator	-	
	E-I_A	0.00	0.00	0.65	33.60	18.07	20.23	0.00	13.13		Dropped	50%	
	E-I_B	0.00	4.88	0.00	0.27	0.00	0.00	0.00	0.05	1	Dropped	13%	
E-I	E-I_C	5.28	0.00	0.00	0.00	5.88	0.03	48.19	0.00	-	Dropped	38%	43%
	E-I_D	46.26	0.00	12.66	8.48	0.06	0.04	0.00	4.11		Dropped	50%	
	E-I_E	18.56	31.02	1.72	0.00	1.75	0.00	0.00	24.72		Dropped	63%	
	E-II_A	3.07	42.56	2.61	44.92	17.33	11.49	7.96	35.92		Re-access to exp well	100%	
	E-II_B	15.35	11.51	33.66	14.84	8.17	16.77	2.45	0.00	1	Re-access to exp well	88%	
E-II	E-II_C	9.96	8.68	0.10	0.00	0.06	2.52	4.44	3.19	5	-	63%	75%
	E-II_D	0.63	10.85	0.00	0.00	2.98	9.77	7.22	0.00		-	50%	
	E-II_E	17.22	9.78	0.00	3.27	24.25	2.22	40.65	0.00		-	75%	
	E-III_A	11.07	19.76	0.00	8.57	33.76	0.00	72.03	32.73		-	75%	
	E-III_B	17.01	39.03	1.32	12.46	1.44	0.06	26.36	11.27	1	-	88%	
	E-III_C	33.81	16.90	7.52	7.15	24.65	2.53	19.71	7.25]	Re-access to exp well	100%	
	E-III_D	3.14	32.05	0.00	43.84	24.56	3.04	22.60	54.02	1	Re-access to exp well	88%	
F 111	E-III_E	41.12	49.95	50.45	4.97	11.09	27.90	12.03	27.72	9	Re-access to exp well	100%	
E-III	E-III_F	49.19	37.77	25.25	35.89	52.77	53.86	35.41	24.12	9	-	100%	83%
	E-III_G	0.00 4.31		0.35	22.10	21.22	0.00	0.00	14.11	1	Dropped	50%*	
	E-III_H	4.33	7.99	0.37	0.00	2.32	0.00	0.00	17.91	1	-	50%	
	E-III_I	4.77	33.24	11.28	11.05	36.03	46.85	2.67	7.32	1	-	100%	
	E-III_J	-	-	-	-	-	-	-	-	1	Accelerator	-	
Cummer	Total	1067.39	1653.66	795.42	1270.36	1100.29	1089.30	1408.84	1205.71	32		-	-
Summary	Average	35.56	53.34	34.52	45.36	35.49	40.34	48.58	38.89	-		76%	-

*Success rate is on-border (50%) but dropped due to low production in all 8 realizations



- ⊘ : Dropped wells due to low success ratio
- •: Accelerator

	Succes	s ratio	Number of wells									
Reservoirs	Analogy		Analogy	Analogy	FC	DP						
Keservons	[A]	FDP	(Success only) [B]	(with back-up) [= B / A]	Per reservoir	To be commingled in the final plan						
B-1	-	68%	-	-	4	5						
B-11	-	67%	-	-	5	2						
D-I	100%	100%	7 - 17	7 – 17	9	9						
E-I		43%	1 – 3	2 - 5	(Back-up res.)							
E-II	65% (48 – 88%)	75%	1 - 4	2 - 6	5	9						
E-111		83%	3 - 7	4 - 11	9							

- Approximated success ratio and number of wells from GIIP of each reservoir, using analogy of nearby fields
- Number of wells in FDP supported by analogy in nearby fields, in consideration of well-failure risk

Development plan of Field 'B' in Malay Basin was established by a holistic approach in consideration of well-failure risk, composed of followings;

- Multi-Scenario and Multi-Realization of static models, capturing high uncertainty of reservoir distribution
- Proxy modeling with experimental design, reducing time consumption of multiple dynamic modeling and simulations
- Consistent well success ratio validated by actual results in nearby fields