

Gas Field Development Challenges and Current Best Practices to Maximise Value

29 – 30 October 2024 | Ho Chi Minh City, Vietnam

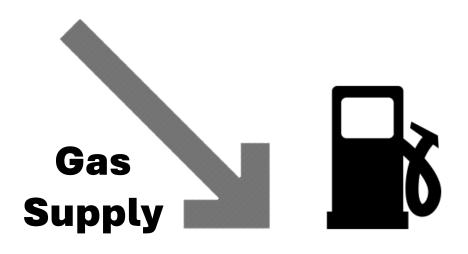
Navigating FDP Challenges to Ensure National Gas Demand

S.N. Zamdy, S. Kumar, T.A.F. Tunku Kamaruddin, F.A. Mustafaal Bakeri, N.H. Kamarul Zaman, M.S. Redzuan, S.K. Sandasegaran, M.A. Wahab, A.M. Yusoff, H. Harris Lee, L.H. Teng
PETRONAS CARIGALI SDN BHD

AGENDA

- 1. Background
- 2. Pain Points
- 3. Optimization Efforts
- 4. Conclusion

A stable and continuous gas supply is essential for maintaining energy security.


Background

Pain Points

Conclusion

In the coming years, gas demand is expected to rise, but the country may face low gas supply.

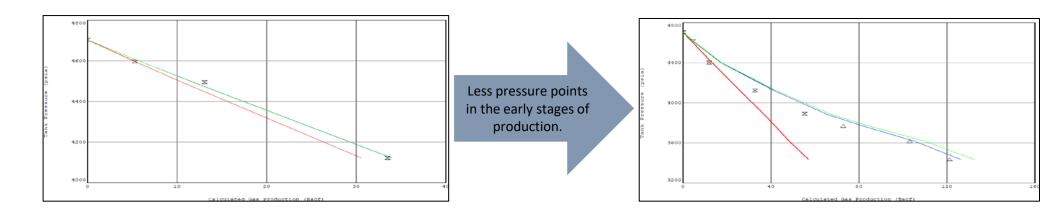
Therefore, it is crucial for PETRONAS to ensure a stable gas supply to maintain energy security.

Natural gas is often regarded as a cleaner alternative to coal or oil.

This has driven the team to develop multiple efforts to overcome the challenges associated with maturing the field development plan (FDP) study.

Project A involves drilling six infill gas producers in the Offshore X brownfield.

Background


Pain Points

Optimization Efforts

Conclusion

Project A facing challenges to move forward due to:

- 1. Market escalation
 - a. The daily rig rate has almost doubled in recent years, leading to a 30% increase in total project costs.
- 2. Volume Reduction
 - a. Latest reservoir pressure data and updated material balance study indicated a strong water drive mechanism in the target K reservoir.
 - b. Led to 25% reduction estimated connected Gas In-Place volume.

Several optimization efforts had been undertaken by the team to reduce the risk of contact movement and costs escalation.

4-1/2" TRSV

4-1/2"

9-5/8"

FLOATS

Background

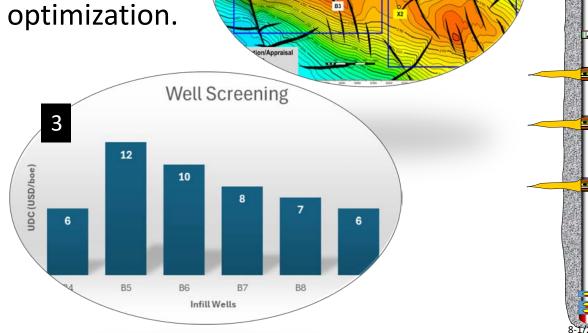
Pain Points

Optimization Efforts

Conclusion

Efforts involved:

16


J1

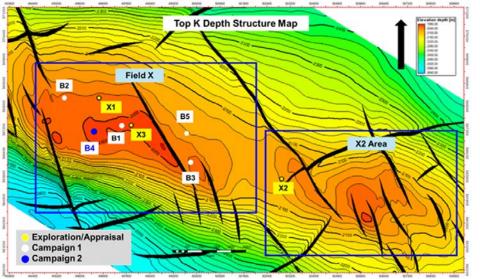
1. Optimize target location and well trajectory.

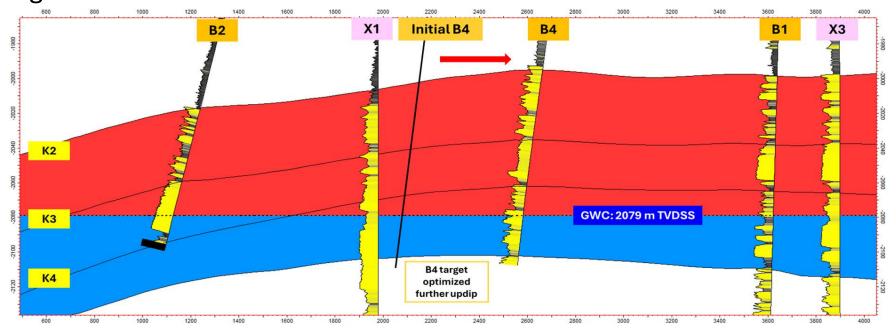
2. Maximize completion target.

3. Number of wells optimization.

I. Well completion design optimization.

Optimizing target location and well trajectory.


Background


Pain Points

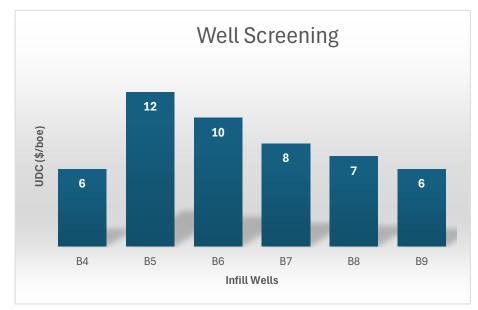
Optimization Efforts

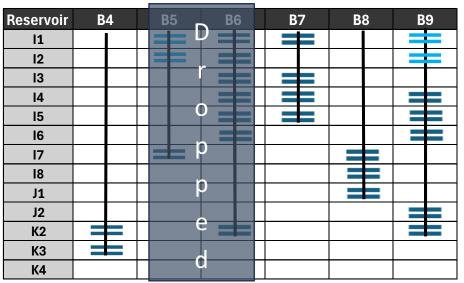
Conclusion

- Shifted the location to the crestal area to stay away from encroaching aquifer and water contact.
 - a. Resulting to shallower total depth (TD).
 - b. Actual rates almost double than prognosed rates.

Reducing well count from 6 to 4 and maximizing completion target for cost optimization.

Background


Pain Points


Optimization Efforts

Conclusion

- Carried out well screening and ranking based on unit development cost (UDC).
- 2. Dropped the 2 wells with highest UDC.
- 3. Maximize the completion target to minimize the reserve loss from the dropped wells.
- 4. Reduce the project costs by 20%.

Reservoir	B4		B5		В6		В7		B8		В9	
	D4		БЭ		ВО		D/		ро		БЭ	
l1												
12												
13								П				
14								П				
15												
16												
17										П		
18												
J1												
J2												
K2												
К3												
K4		_										_

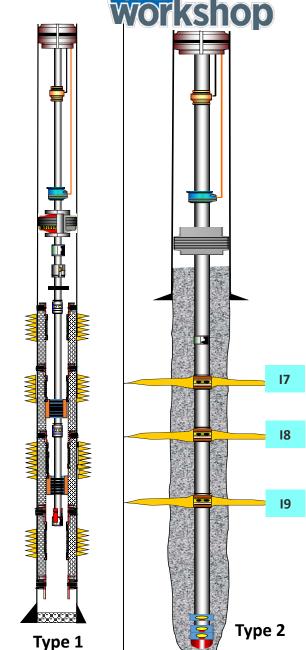
Original

Optimized

Well completion design changes for cost optimization.

Background

Pain Points


Optimization Efforts

Conclusion

- 1. Unconsolidated reservoir with tendency for fines migration- require downhole sand control.
- 2. Well completion design optimization:
 - a. Type 1 : Screenless frac pack + resin consolidation → frack pack with screen (eSTMZ).
 - b. Type 2 : Cased Hole Gravel Pack (frack pack) → cemented monobore + screenless frac pack .

- Single trip well completion
- ✓ Single trip perforations
- ✓ Pilot technology

Background

Pain Points

Optimization Efforts

Conclusion

Conclusion

- High production and reserve attainability, along with cost reductions, have contributed to the success of this project.
- 2. Overall, this project was a huge success due to:
 - a. Proactive approach in incorporating new subsurface data.
 - b. Able to adapt to new technology to optimize costs.
- These efforts have significantly helped to ensure gas security.
- 4. The strategies and methods applied can be replicated in other projects, helping to share knowledge and best practices effectively.