

Decommissioning and Restoration – Fostering Excellence through Regulations, Innovation, and Sustainable Practices

30-31 JULY 2024 | BANDAR SERI BEGAWAN, BRUNEI

Decommissioning and Restoration – Fostering Excellence through Regulations, Innovation, and Sustainable Practices

The Development of a Rigless EPSm Framework to Decommission Mature Phase III Well Stock in Australia

Jamie Stewart

Ē

- 1. Case Study Project Background
- 2. Project Execution Developing the Framework
- 3. Plan for Success Developing the Sustainability Plan
- 4. Building the Project Scope
- 5. Realising SIMOPS in a Rigless Framework
- 6. The Learning Curve
- 7. Project Challenges
- 8. The Learnings Mature Well Stock Phase 3 Well P&A

Project Background

- Australia Offshore Victoria Bass Strait Gippsland Basin
- Platform Wells Decom
- Harsh Environment
- 44 years old structural impairment
 - 21 wells Phase 3 well decommissioning:
 - Phase 1 and 2 previously undertaken

Project Objectives - Sustainability

- Sustainability:
 - Change the norm / change the strategy / change the approach!
 - Meet and exceed high bio cultural and environmental regulations
 - By developing a sustainable Rigless Solution
 - Remove dependency on drilling rigs
 - Reduces environmental and climate impacts / footprints
 - Develop a multi skilled crew
 - Maintain sustainable smaller crew levels

Project Execution

- Strategy to Execute
 - Development of an **Execution Framework**
 - Full front-end engineering inserted in client office.
- Contracting Structure Turnkey
 - Create a "Value Chain"
 - Planning started 2 years in advance
 - Integrated into the operators wells team early
 - SIMOPS opportunity to be realized
 - Multi Skilling opportunity generated

Contracting Structure

Engineer

Fully Resolved Basis of Designs / Identify Technologies Technical Requirements / Techniques / Supply Chain

Procure

Driven Strongly by Engineering Technology / Personnel / Commercial Structures Sought

✓ Service Management

Effectively Deliver the plan at the wellsite Integrating Operations / Coordinate Same Team That Engineered and Guided Procured Manage Service Delivery at Wellsite End to End Continuity

Plan for Success

- Regulator Engagement Stringent bio culture and environmental regulations applied:
 - Regional and governmental engagement
 - Regional First high profile
- Approval process and Governance Closely follow platform and operator safety cases.
 - 3rd Party Validations:
 - Structure
 - Decks
 - Conductor Jacking Unit
- Safely Engineered / Safely Commissioned / Executed SIMOPS first in country with zero incidents

- Rigless framework developed for impaired asset abandonment
- Engineered Execution Approach with Regulatory & Environment Consultation
- Engineering and Project Execution
 Team Inserted In Operators Office
- Phased Operations Approach

Sustainability – The Unit – Doing what an MODU Can Do!

The Services – The Scope

- Using AWJC Ideal for Batch Cutting Operations
- Safely hoist, remove and lay down conductor Batch

Rigless Jacking Unit Integrated Well Decommissioning Team Multi-skilled Offshore Crew executing: – Project management – Wells engineering – Structural engineering – Facility engineering – Wellsite management – Rigless pulling unit – AWJC - Abrasive well severance services -	Project Solutions		
Multi-skilled Offshore Crew executing: - Project management - Wells engineering - Structural engineering - Facility engineering - Wellsite management - Rigless pulling unit - AWJC - Abrasive well severance services -	Rigless Jacking Unit	nmissioning Team	
 Project management Wells engineering Structural engineering Facility engineering Wellsite management Rigless pulling unit AWJC - Abrasive well severance services - 	Aulti-skilled Offshore Crew executing:		
 Pumping services Fishing services Conductor jetting services Tubular running services Conductor recovery services 			

✓ Cut

- ✓ Prove
- ✓ Recover
- ✓ Bore and Pin
- ✓ Saw
- ✓ Wash
- ✓ Lay Down

The Scope

✓ Cut Prove \checkmark

Recover \checkmark

✓ Bore and Pin

✓ Saw

Wash \checkmark

Lay Down \checkmark

SIMOPS and Optimisation – Execution Framework

Learning Curve Breakoff

- Breakoff significantly higher COVID
 - Use of local crews only
- 3 Wells Purple Wells Out of Scope
 - Found irregular wellheads
 - Additional casing Client unaware!
- Strong Learning Curve Performance:
 - Core Crew / Multi skilled
 - 21 wells 3400 operating hours
 - 99% Productive Time

Recovering Conductor – Project Challenges

De-Risk Conductor Recovery Issues

FAILURE Material loss in prevailing wave direction

RESULT Pinhole corrosion through surface wall

FAILURE Buckling (collapse) of conductor

RESULT Compressive collapse and material failure

FAILURE

Circumferential failure of the conductor and extensive localized material loss

RESULT

Upper section of conductor is unconstrained. Lower section is subject to accelerated material loss at the splash zone

- De-risk conductor recovery Not at structural decom phase
- Planning Essential
 - Up front preparations / crew / platform etc
- Regulator Engagement
- Embedding the planning & executions teams in the client office:
 - Project Management
 - Well Engineering / Structural Engineering / Facility Engineering
- Use of a full multi skilled offshore crew improved performance

Decommissioning and Restoration – Fostering Excellence through Regulations, Innovation, and Sustainable Practices

The Development of a Rigless EPSm Framework to Decommission Mature Phase III Well Stock in Australia Questions

