

Carbon Storage and Management

3-4 SEPTEMBER 2024 | KUALA LUMPUR, MALAYSIA

[Open]

Lower Completion Strategy for Carbon Capture Storage Wells

Shaturrvetan Karpaya PETRONAS Carigali Sdn Bhd

Background

[Open]

Production WHP

Case study focus on Lower Completion:

- ✓ Design for injectors
- ✓ Challenges of converting existing producers to observation wells

Fibre Optics : DTS/DAS/DSS All wells (Injectors and **Observation**)

- ✓ Well Integrity Monitoring
- ✓ Reservoir and overburden integrity monitoring
- \checkmark CO₂ plume migration monitoring

Reservoir Modelling Forecast of Permeate Injection

Injectors Properties	Average	
Permeability (mD)	200-350	
Porosity (%)	0.2-0.35	
Maximum Tubing Head	138	
Pressure (THP) (barg)		

- Design well to meet this requirement
- Reservoir pressure increases with CO₂ injection rate
- Maximum THP limited by compressor design

Permeate Injection Performance Evaluation

Options Evaluated	EHD	Modelled Permeate Rate
	(inch)	Performance
Barefoot Completion	N/A	23% more than Base Rate
3 3/8" Perforating	0.4"	16% more than Base Rate
Gun, 12 spf, 60°		
3 3/8" Perforating	0.4"	Base Rate
Gun, 6 spf, 60°		
3 3/8" Perforating	0.35"	9% less than Base Rate
Gun, 6 spf, 60°		

- ✓ Gun size evaluation for 5.5" liner
- ✓ Barefoot performed 23% more than Base Rate option
- Higher spf, more area open to flow thereby reduces mechanical pressure loss

[Open]

Tubing Size Selection Derisked from Existing Well Lower Completion

3 1/2" tubing able to fullfill MMV requirements

Conclusion

Selecting appropriate lower completion strategy is paramount and need to be studied early to ensure success of a CCS project

- ✓ Having barefoot completion is an advantage for injectors, execution may require wellbore stability study
- ✓ Early assessment of injection tubing head pressure to be studied with reservoir drive mechanism and increasing reservoir pressure
- ✓ Higher shot per foot density gun can improve area open to flow for solid liner option
- Critical to understand the compatibility of running new tubing with completions in the existing wells
- ✓ Having a smaller tubing size can reduce the risk of tubing stuck and NPT during operations
- ✓ However, proper tubing size selection required to fulfill the MMV requirements

Acknowledgements/ Thank You / Questions

The authors of this paper would like to extend their appreciation to PETRONAS Carigali Sdn Bhd for the permission to publish the data presented in this paper. Special thanks to my team members who made their valuable contribution towards this case study. Lastly, we would also like to thank the management of Petroliam Nasional Berhad (PETRONAS) for their unwavering support and sponsorship to attend this workshop paper presentation