

Carbon Storage and Management

3-4 SEPTEMBER 2024 | KUALA LUMPUR, MALAYSIA

Perfororation Techniques for Injectivity Enhancement for CCS Projects

Khong Chee Kin

SLB

Agenda

- Perforation Damage
- Perforation Tunnel Clean up
- Static and Dynamic Underbalance
- Propellant

Crushed Zones in Perforation Tunnels

Sequence of Perforating Events and Borehole Dynamic

• 0 – 15 microsecond – birth of jet

- 15 250 microsecond creation of cavity in rock
- 3 15 millisecond initial response of wellbore fluid
- 10 100 millisecond perforation damage removal
 - Dynamic Underbalance
- > 50 millisecond response of reservoir

Initial over balance	25330 - 20330 - 15330 -	→ 10 - 10)0 msec	– dama	ge removal
possible - to get DUB when	08 (4) and UB -1 (ns()	> 50 ms	ec – res		esponse
borehole is balanced or slightly	-1500 -2000		Time		94596)
over balanced					

Dynamic Underbalance Perforation (DUB)

(SPE 97363)

- Obtains clean perforations by utilizing underbalance period to remove perforating debris & crushed formation.
- Combines perforating system design and wellbore conditions to control downhole pressure transients at the time of perforating.

Berea Sandstone Micrographs from perforated core thin sections Note clean sand grains in the DUB case (blue = perforation tunnel)

Conventional vs. Dynamic Underbalance

- <u>Conventional Underbalance (this example):</u>
- BHP before perf. = 1000 psi UB
- Instantaneous UB = No (< 0.1 sec)</p>
- Max UB < 500 psi (variable, borehole dependent)
- Kc/K = 0.047 -> PR < 70%</p>

- Dynamic Underbalance (this example):
- BHP before perf. = 1500 psi OB (can be slightly OB)
- Instantaneous UB = 2500 psi
- Max UB = 2500 psi (for this case) (Max UB is reservoir pressure dependent)
- Kc/K = 1 -> PR = 100%

• https://www.slb.com/completions/well-completions/perforating/perforating-gunsystems/hollow-carrier/pure-clean-perforations-system

PURE vs. Non-PURE Gas and Liquid Core Test

Non-PURE

Pore fluid: GAS (Dry N2)

PURE

Non-PURE Pore fluid: LIQUID (brine)

 https://www.slb.com/completions/well-completions/perforating/perforating-gunsystems/hollow-carrier/pure-clean-perforations-system

P3 – PURE post-perforating (SPE -144080-MS)

- P3 is an adaptation of PURE that does not perforate the casing.
- Implosion chamber with atmospheric air at the surface is placed across a perforated interval in the well to be treated to create Dynamic underbalance.
- Dynamic underbalance is the term given to a rapid and large (violent) drop of pressure in the well bore when the implosion chamber is activated.
- The pressure drop is usually short lived 15 50 ms
- Any "loose" material in the perforation tunnels (or near wellbore) is sucked into the wellbore and some into the P3 chamber.

How Much Static Underbalance is Required?

Propellant Fracturing Physics

Propellant Surface Burn

Comparison of three fracturing processes

	Explosion	Propellant gas	Hydraulic	
Peak pressure (psi)	10 ⁶ – 10 ⁷	10 ³ - 10 ⁴	10 ³	
Pressure rise time (sec)	10 ⁻⁷ - 10 ⁻⁵	10 ⁻⁴ - 10 ⁻²	10 ¹ - 10 ²	
Pulse Duration (sec)	10 ⁻⁶ - 10 ⁻⁵	10 ⁻² - 10 ⁻⁰	10 ³ - 10 ⁴	
Number of fractures	Various	3-10	1	
Fracture length (ft)	< 3	< 10	10 ¹ - 10 ²	
Fracture pattern	Tiny damaged zone	Multiple radial	Single by-wing	
comments	Wellbore damage & crush zone		Direction dominated by in-situ stresses	

Propellant Performed Past Research

Propellant Lab Stimulation (90 Phased Perforated Core)

Mineback (Sandia Lab)

Time (sec)

Figure 3 – Propellant stimulation with 90° perforation phasing (Laboratory Scale).

Typical fracture pattern from cased hole with 90° phasing in a fractured reservoir

Sandia mine back

Propellant Technology

Propellant Perforation Enhancement at Well BRGA-3 in Malaysia

Well-B 77 degree deviated well 2 7/8 in HSD Coiled Tubing Conveyed Perforation

- Low Perm B Sand 201 ft PJN2906 & PJO2906 at 6 spf with 118 ft (102.6 kg) MPSleeve 73 Propellant
- Lower B Formation X463-X360 ftmd
- Upper B Formation X360-X464 ftmd
- Perforation Gun + Propellant Sleeve Well-B Well Test Compared to Cased Perforated Completion SPAN Model indicate Infinite Conductivity Fractures created

Production profile for tested flowrate – high perf skin (blue line) Substantial red shading (right most track) of sleeve propellant above clean perf Infinite conductivity higher rate than a low skin perforation skin (red line)

Propellant Perforation Enhancement at Well BRGA-2 in Malaysia

80 degree deviated well 2 7/8 in HSD Coiled Tubing Conveyed Perforation

- Low Perm AL Zone 60 ft PJN2906 & PJO2906 at 6 spf with 13 ft (11.4 kg) MPSleeve 73 Propellant
- Low Perm AU Zone 120 ft PJN2906 & PJO2906 at 6 spf with 31 ft (27 kg) MPSleeve 73 Propellant
- Perforation Gun + Propellant Sleeve Well-A Well Test Compared to Cased Perforated Completion SPAN Model indicate enhancement by Finite Conductivity Fractures created

Production profile for tested flowrate – high perf skin (blue line) Minor red shading (right most track) of sleeve propellant above clean perf <u>Finite conductivity similar rate to low skin perforation skin (red line)</u>

Skin Reconciliation to evaluate various skin effects

Fracture Half Length by Propellant Evaluation based on Measured Production Test Rate

Well	Reservoir	Average	Karakas &	Productivity	Skin	Karakas
Name		Measured	Tariq	Ratio	Propellant	& Tariq
		Test Rate	Modeled	From	_	Perf Skin
		(MMscfd)	Rate	Equation 1		from
			(MMscfd)			Table 5
BRGA-3	0_20	4.0	1.685	2.37	-5.23	3.53
BRGD-2	0_40	1.2	0.715	1.68	-3.16	3.61

Stotal = Spropellant + Sperf + Sdev + Snondarcy

$$Stotal = -\ln\left(\frac{Rwa}{Rw}\right)$$

Fracture half
$$- length = Rwa = Rw * e^{(-1+Stotal)}$$

*Rw=4.25 in

Well	Reservoir	Skin	Karakas	Karakas	Karakas	Skin	Approx
Name		Propellant	& Tariq	& Tariq	& Tariq	Tota1	Fracture
		from	Perf Skin	Deviatio	Non-		Half-
		Table 6	from	n Skin	Darcy		Length
			Table 5		Skin		(ft)
BRGA-3	0_20	-5.23	3.53	-2.0	0.7	-3.00	7.1
BRGD-2	0_40	-3.16	3.61	-2.9	1.1	-1.35	1.4

Acknowledgements / Thank You / Questions

