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Viking CCS Project Conditions and Challenges

Viking CCS Transportation and Storage System Overview

e Transportation of industrial CO,

(with impurities) in dense phase

* Dedicated platform injection wells

drilled in depleted gas fields B
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Well Designh Challenges

* CO, impurities variations

e Collaborative use of flow

1—

Depleted Reservoir Injection — Wellbore thermal effects

i

1—

Cement —»

— Modelling, phase envelope

Standards for tubular design — Operations and load cases

assurance and tubular design — Lack of single application |

to streamline the process | ..o ==~
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CO, Injection Model (CIM) — Equation Of State (E

e Equation of State (EOS) critical to handle impurities
e Limited EOS options for CCS: SRK, Peng-Robinson, CPA, SAFT, GERG-2008

* CIM Selection of GERG-2008: ongoing efforts for robust EOS in developing
CCS technology
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Composition (Molar %)

Component ™ Maximum Intermediate Pure Case
Impurity Case Impurity Case

CO: 96.000 98.0276 100.0
H: 2.000 06177 0.0
Nz 1.500 0.3936 0.0
CH: 0.480 0.2843 0.0
H:0 0.005 0.0037 0.0
H:S 0.002 0.0004 0.0
Ar 0.002 0.6724 0.0
Q2 0.001 0.0003 0.0

Total 100.000 100.0000 100.0
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CO, Injection Model (CIM) — Choke modelling

. Pressure Drop and Temperature Effects Across e —
d, dz: ( e
Choke: 1[ @/) —ma =
O Temperature drop due to Joule-Thomson
cooling v

0Single-phase dense fluid flashes to multi-phase
conditions downstream r——

* Choke integrated functionality: ——
* temperature loss, considering fluid H ._
vaporization across the choke o1
e pressure loss Corr [ | | [on | My
* fluid phase at outlet TR T R e
* Flow coefficient Cv T e e
[ _cdaiae ]




CO, Injection Model (CIM) — Validation Workshop

e Comparison of CIM with Industry Flow Assurance Model (FAM)

e Both use GERG-2008 EOS for CCS fluid thermodynamics

* Injection operations based on max impurity CO, fluid mixture composition
e Consistent BHFP and WHFT values for both models

Input Result
BHFP WHFT WHFP BHFT
Case [ Mass Phase (psi) (°F)
Flow (psi) (°F)
FAM CIM % Dev FAM CIM % Dev"

A High 340 26.7 2-Phase 670 710 5.6% 4.5 7.1 3.0%
B High 4500 39.4 Dense 1960 1960 0.0% 71.3 70.6 0.9%
C Medium 340 6.0 2-Phase 330 340 2 9% 1.9 6.9 5.7%
D Low 340 355 Gas 470 500 6.0% 90.1 82.3 8.8%
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* CO, Injection Model (CIM) — Validation
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e Overall good agreement between

CIM and FAM

e Some divergence in multi-phase
flow, possibly due to assumptions

in wellbore heat transfer

e Variances in mid-well temperatures
attributed to differences in liquid

holdup behavior



Well Design — Viking CCS

e 3 string architecture, open hole lower completion

* |[njection via surface Christmas tree with choke control

e Tubing Run Down Hole Safety Valve (TRDHSV) for
catastrophic damage isolation

 Fit-for-purpose TSA application needed due to
limitations in legacy software for modeling CO, injection
operations (into depleted reservoirs) and tubular stress

analysis
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Well Desigh — Operating Scenarios

Scenario Well Phase Description
Scenario 1 Early-Life Steady-state injection — Gas, multi-phase & dense-phase
Scenario 2 Early-Life Short-term shut-in after injection
Scenario 3 Early-Life Long-term shut-in after injection
Scenario 4 Early-Life Startup/restart after shut-in - _—
. - = emperature (°F)
Scenario 5 Early-Life Surface leak/venting
Scenario 6 Late-Life Steady-state injection — Dense-phase o =0 =
Scenario 7 Late-Life Short-term shut-in after injection N
Scenario 8 Late-Life Long-term shut-in after injection 2200
Scenario 9 Late-Life Startup/restart after shut-in
Scenario 10 Late-Life Surface leak/venting
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400 —
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200 / Scenaric 5 DHSY Closed Scenaric 5 High Rate cenario 5 Low Fate
— | = Well Kill - Cold = Wall Kill - Hot s=e== UDT
0

—— Phase Envelope —— S5cenario 1 High Rate ® wellhead @ Topreservoir ® Choke
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Well Design — Load Cases for Production Casing
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Well Design — Load Cases for Production Tubing
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T The experience of Agile Development Workshop

e Fit for Purpose Solution = model aligns with engineering objectives,
accommodates common models and unique well design requirements

e Agile development —> rapid identification & solution of specific design
challenges

e Cloud-based architecture enhances efficiency, providing immediate access to
updates and enabling direct user contribution

e Viking CCS well engineering team actively contributed to CIM software
adaptation

 FFP allows multiple iterations of well path, casing/cement program, etc. for up-
to-date Basis of Design assessments
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Conclusion

e CCS challenges for a traditional well design workflow
e Fit-for-Purpose solution that integrates CCS fluid modelling in tubular design
application:
0 Allows swift identification of casing and tubing CCS design solutions
O Facilitates sensitivity analysis which are crucial in CCS design
0 Agile development for rapid identifications and solutions of well design

e The proposed well design is inherently robust, accommodating fluctuating
injection rates for long-term performance

 Ongoing development targets modeling gaps, aiming for a complete design
analysis package by end-2024



Future Work

e CIM for flow assurance to include alternatives to GERG-2008 EOS for

Impurities

 FFP application to fully integrate choke functionality and injectivity

functionality

e Create functionality for simulating well leaks, from small emissions to

rare blowouts, to model extreme low temperatures
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