

Carbon Storage and Management

3-4 SEPTEMBER 2024 | KUALA LUMPUR, MALAYSIA

Development of A Fit-for-Purpose CO₂ Injection Model for Casing And Tubing Design

Ruggero Trevisan Altus Well Experts

- Project specifics
- Well design challenges
- CO₂ Injection Model (CIM) and validation
- Tubing and Casing design/verification
- "Agile" development
- Conclusion
- Future work

Viking CCS Project Overview

10 million tonnes CO₂ in emissions

Harbour Energy

is what we are committing to capture per year by 2030.

2,700 m below the seabed

is where the CO₂ will be stored, beneath a 'SuperSeal' of between 600 and 1,000 feet of salt.

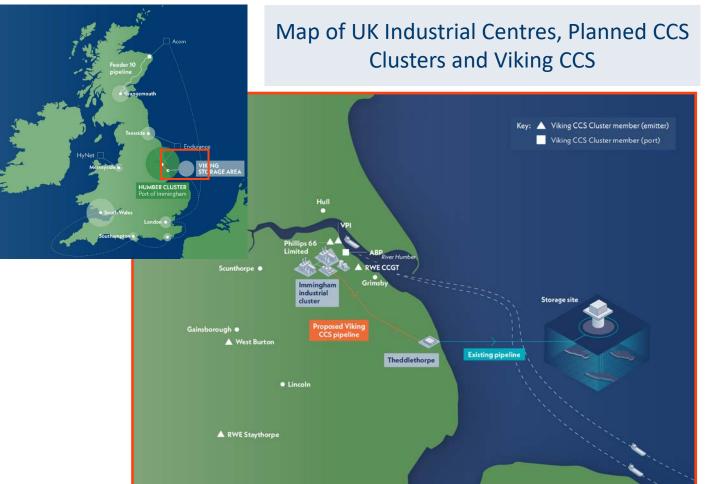
Over **40** year track record

of operating infrastructure projects in the North Sea.

up to ± 7 billion

300 million tonnes

fields in the Southern North Sea.

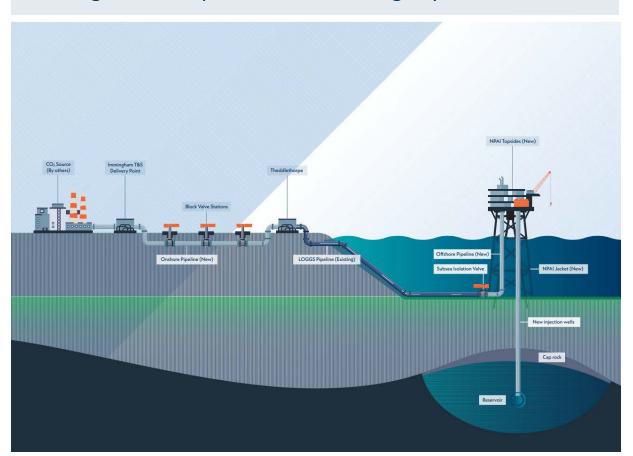

VikingCCS

investment from 2025 to 2035 across the CCS value chain including capture and storage.

of storage capacity in our depleted Viking gas

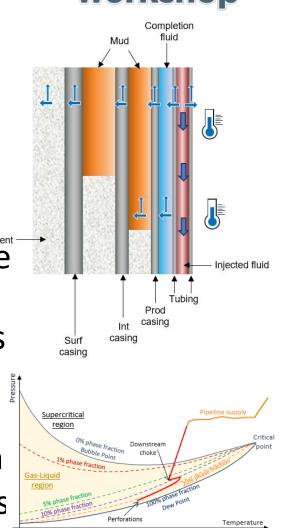
Over **50** % of Humber emissions

will be captured, transported, and securely stored by our project.



Viking CCS Project Conditions and Challenges

- Transportation of industrial CO₂
 (with impurities) in dense phase
- Dedicated platform injection wells drilled in depleted gas fields
- Topsides chokes employed
- Low pressure reservoir


Viking CCS Transportation and Storage System Overview

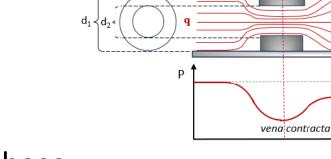
Well Design Challenges

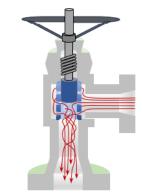
- Depleted Reservoir Injection \rightarrow Wellbore thermal effects
- CO_2 impurities variations \rightarrow Modelling, phase envelope
- Standards for tubular design \rightarrow Operations and load cases
- Collaborative use of flow assurance and tubular design → Lack of single application to streamline the process

CO₂ Injection Model (CIM) – Equation Of State (EOS)

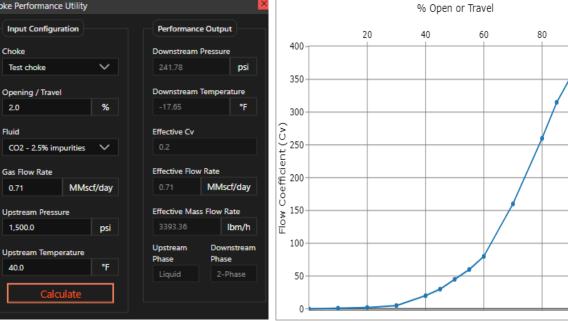
- Equation of State (EOS) critical to handle impurities
- Limited EOS options for CCS: SRK, Peng-Robinson, CPA, SAFT, GERG-2008
- CIM Selection of GERG-2008: ongoing efforts for robust EOS in developing CCS technology

	Composition (Molar %)			4000	Pure CO2 Case (100% CO2)
Component	Maximum Impurity Case	Intermediate Impurity Case	Pure Case	3500	
CO ₂	96.000	98.0276	100.0	3000	
H ₂	2.000	0.6177	0.0	(bsia) 2500	
N2	1.500	0.3936	0.0	2000	
CH₄	0.490	0.2843	0.0	1500	
H ₂ O	0.005	0.0037	0.0	1000	
H ₂ S	0.002	0.0004	0.0		
Ar	0.002	0.6724	0.0	500	
O 2	0.001	0.0003	0.0	0	-100 -80 -60 -40 -20 0 20 40 60 80
Total	100.000	100.0000	100.0		Temperature (°F)



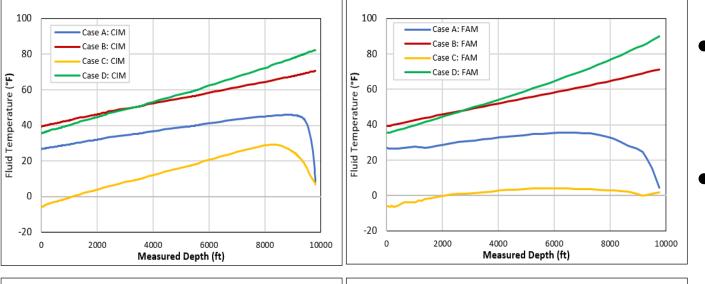


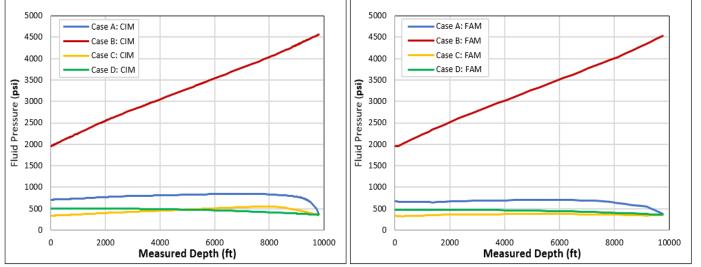
- Pressure Drop and Temperature Effects Across Choke:
 - Temperature drop due to Joule-Thomson cooling


Single-phase dense fluid flashes to multi-phase conditions downstream

- Choke integrated functionality:
 - temperature loss, considering fluid vaporization across the choke
 - pressure loss
 - fluid phase at outlet
 - Flow coefficient Cv

100




CO₂ Injection Model (CIM) – Validation

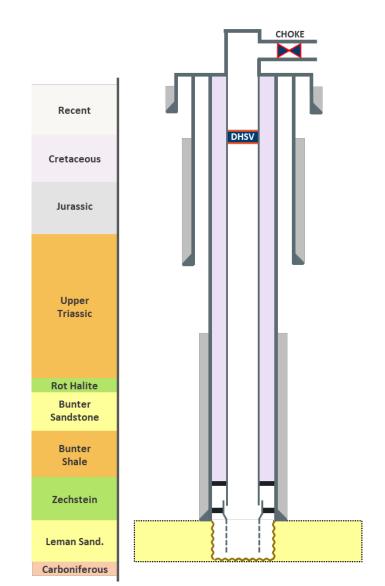
- Comparison of CIM with Industry Flow Assurance Model (FAM)
- Both use GERG-2008 EOS for CCS fluid thermodynamics
- Injection operations based on max impurity CO₂ fluid mixture composition
- Consistent BHFP and WHFT values for both models

		Input		Result						
Case	Mass Flow	BHFP	WHFT		WHFP			BHFT		
		(psi)	(°F)	Phase	(psi)			(°F)		
					FAM	СІМ	% Dev	FAM	СІМ	% Dev*
А	High	340	26.7	2-Phase	670	710	5.6%	4.5	7.1	3.0%
В	High	4500	39.4	Dense	1960	1960	0.0%	71.3	70.6	0.9%
С	Medium	340	-6.0	2-Phase	330	340	2.9%	1.9	6.9	5.7%
D	Low	340	35.5	Gas	470	500	6.0%	90.1	82.3	8.8%

- Overall good agreement between
 CIM and FAM
- Some divergence in multi-phase
 - flow, possibly due to assumptions

in wellbore heat transfer

 Variances in mid-well temperatures attributed to differences in liquid holdup behavior



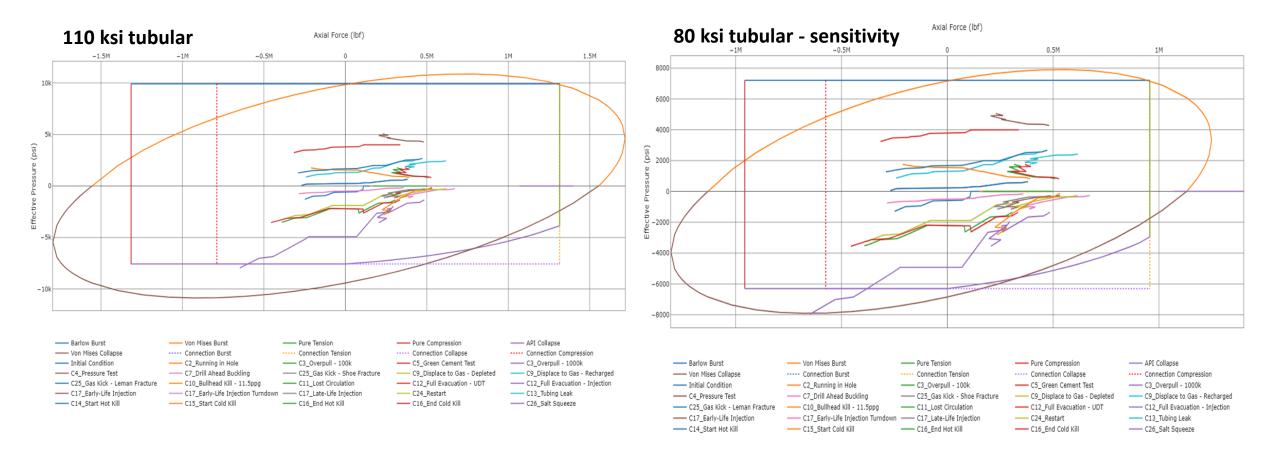
Well Design – Viking CCS

- 3 string architecture, open hole lower completion
- Injection via surface Christmas tree with choke control
- Tubing Run Down Hole Safety Valve (TRDHSV) for catastrophic damage isolation
- Fit-for-purpose TSA application needed due to limitations in legacy software for modeling CO₂ injection operations (into depleted reservoirs) and tubular stress analysis

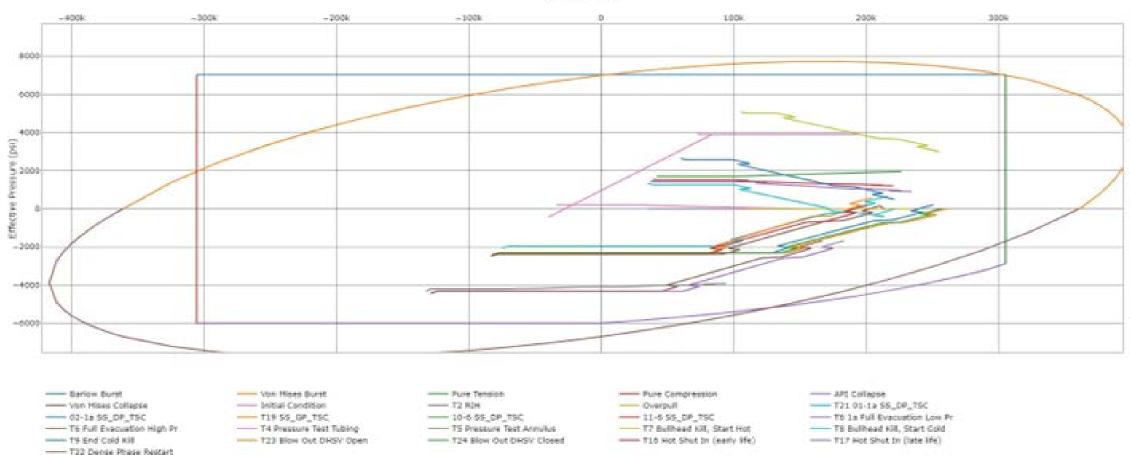
400

200

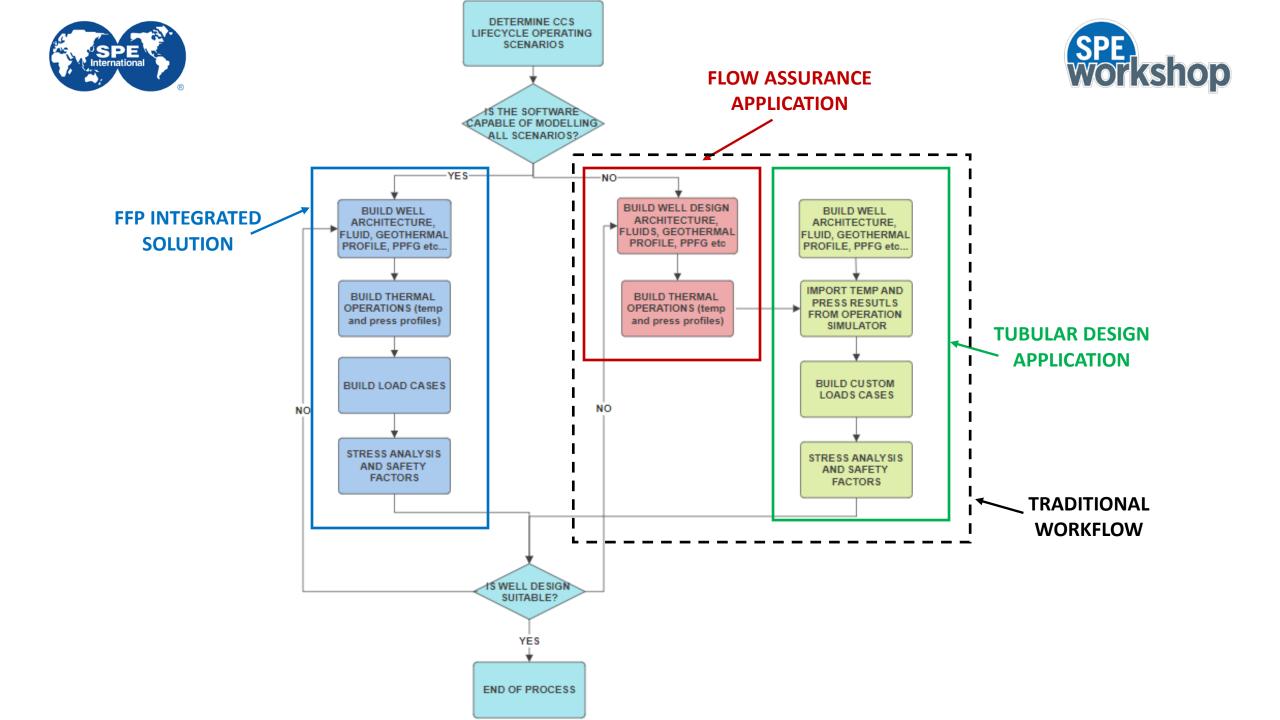
Well Design – Operating Scenarios


Scenario	Well Phase	Description		
Scenario 1	Early-Life	Steady-state injection – Gas, multi-phas	se & dense-phas	se
Scenario 2	Early-Life	Short-term shut-in after injection		
Scenario 3	Early-Life	Long-term shut-in after injection		
Scenario 4	Early-Life	Startup/restart after shut-in		T (05)
Scenario 5	Early-Life	Surface leak/venting		Temperature (°F)
Scenario 6	Late-Life	Steady-state injection – Dense-phase	0-	0 50 100 150 200
Scenario 7	Late-Life	Short-term shut-in after injection		
Scenario 8	Late-Life	Long-term shut-in after injection	2000	
Scenario 9	Late-Life	Startup/restart after shut-in	2000	
Scenario 10	Late-Life	Surface leak/venting	- \	
-44 1400 1200 (sc) 800 -9 800	0 -20 0	Temperature (°F)	4000 ∰ 5 6000 8000 10000	
89 - 600		· · · · · · · · · · · · · · · · · · ·	Run Upper	r Completion Scenario 1 High Rate Scenario 1 Low Rate

Run Upper Completion	Scenario 1 High Rate	Scenario 1 Low Rate
Scenario 1 Low Rate Gas	Scenario 1b Inject Glycol	Scenario 2 Shutin Short
Scenario 3 Shutin Long	Scenario 4 Restart	Scenario 5 DHSV Open
Scenario 5 DHSV Closed	Scenario 6 High Rate	Scenario 6 Low Rate
Well Kill - Cold		····· UDT


Well Design – Load Cases for Production Casing

Well Design – Load Cases for Production Tubing


Axial Force (lbf)

The experience of Agile Development

- Fit for Purpose Solution → model aligns with engineering objectives, accommodates common models and unique well design requirements
- Agile development → rapid identification & solution of specific design challenges
- **Cloud-based architecture** enhances efficiency, providing immediate access to updates and enabling direct user contribution
- Viking CCS well engineering team actively contributed to CIM software adaptation
- FFP allows multiple iterations of well path, casing/cement program, etc. for upto-date Basis of Design assessments

Conclusion

- CCS challenges for a traditional well design workflow
- Fit-for-Purpose solution that integrates CCS fluid modelling in tubular design application:
 - Allows swift identification of casing and tubing CCS design solutions
 - Facilitates sensitivity analysis which are crucial in CCS design
 - Agile development for rapid identifications and solutions of well design
- The proposed well design is inherently robust, accommodating fluctuating injection rates for long-term performance
- Ongoing development targets modeling gaps, aiming for a complete design analysis package by end-2024

Future Work

- CIM for flow assurance to include alternatives to GERG-2008 EOS for impurities
- FFP application to fully integrate choke functionality and injectivity functionality
- Create functionality for simulating well leaks, from small emissions to rare blowouts, to model extreme low temperatures

ACKNOWLEDGEMENTS / THANK YOU / QUESTIONS

Harbour Energy plc, and Viking CCS license partner BP plc

Altus Well Experts, Inc.

Dr. Afif Halal