

Sustainable Sand Management Control and Solutions Balancing Performance, Costs, and Environment

20–21 AUGUST 2024 | KUALA LUMPUR, MALAYSIA

Sustainable Sand Management Control and Solutions - Balancing Performance, Costs, and Environment

Squeezing Gravel-Pack in Multi-Layer Well with Sanding Cavities in Formation: Simulation, Optimization and Case Study

Zhou Bo

Production and Sand Control Completion Laboratory China University of Petroleum (East China)

Content

Part 1 Simulation of sanding Cavities

- Rationale
- Prediction method
- Simulation results
- Pattern management

Part 2 Simulation of squeezing gravel-pack

- Rationale
- Models
- Optimization
- Case Study

Simulation of sanding Cavities: Rationale

Simulation of sanding Cavities: Prediction method

- Particles as objects (POM) microstructural model
- Particle size and shape distribution
- Physical heterogeneity characterization
- Random distribution of physical properties generally consistent with the physical manifestations

Simulation of sanding Cavities: Prediction method

What can we obtain?

- Sand production Cavity volume
- Sanding Cavities pattern/profile
- The scope of sanding damage
- Sand damage degree
- Sand production degree index

Simulation of sanding Cavities: Simulation results

Simulation of a single-layer sand production cavities:

A single-layer sample

- The sand production form in the range of 0.4-1.0m
- The sanding damage range is 1.88 m, the average damage degree is 0.37, and the sanding degree index is 0.211.

Three layers of sand production cavities simulation:

A three-layer sample

- The sand production difference between layers is obvious.
- The sand production ranges of the three layers are 0.937 m, 1.068 m and 2.463 m, respectively.

Up to 8 layers can be simulated simultaneously

Simulation of sanding Cavities: Pattern management

Pattern A: Complete reservoir morphology, no sand pores and cavities.

Pattern B: The formation has different degrees of sand deficit, but the

skeleton structure is complete.

Pattern B1: Pore liquefaction form, but the formation skeleton is complete.

Pattern B2: The formation skeleton was slightly damaged.

Pattern B3: Earthworm-like hole shape

Pattern C: large hole form, formation sand production is serious.

Pattern A Pattern B1 Pattern B2 Pattern B3 Pattern C

Squeezing Gravel-Pack in Multi-Layer Well: Rationale

1. Description or prediction of sanding cavities

2. Squeezing Gravel-Pack Simulation in Multi-Layer Well

3. Optimization of packing parameters

Squeezing Gravel-Pack in Multi-Layer Well: Models

- M1: Oil pipeline pumping friction model
- M2: Casing return flow friction model
- M3: Single-layer suction index model
- M4: Multi-layer flow balance model
- M5: Casing flow balance model
- M6: Sand discharge deficit filling model

All data models integrated into the software **Sandcontrol Office**, an integrated decision-making software platform for solids control.

Squeezing Gravel-Pack in Multi-Layer Well: Models

M1: Oil pipeline pumping friction model

• Solid-liquid mortar physical property calculation model

$$V_g = V_{gb}(1 - \varphi_g)$$
 $\rho_{gb} = \rho_g(1 - \varphi_g)$ $V_m = V_{gb}(1 - \varphi_g) + V_l$

$$C_g = \frac{R_g(1 - \varphi_g)}{R_g(1 - \varphi_g) + 1} \qquad \qquad \rho_m = \frac{R_g(1 - \varphi_g) \cdot \rho_g + \rho_l}{R_g(1 - \varphi_g) + 1}$$

 Sand-carrying liquid and solid-liquid mortar pipe flow friction model

$$\frac{dP}{dh} = \rho_m g \sin \theta + f_m \frac{\rho_m}{D} \frac{v_m^2}{2}$$

 Modeling of orifice flow friction pressure drop

$$\left(\Delta P_f\right)_{perf} = lpha rac{B
ho q_0^2}{d_0^4} \left(rac{L_p}{L_{p0}}
ight)$$
 Unfilled perforation

$$\Delta P = \alpha (q \cdot \frac{\mu B L_p}{\pi k_p h_p S_D r_p^2} + q^2 \cdot \frac{\beta_p \rho B^2 L_p}{\pi^2 h_p^2 S_D^2 r_p^4})$$
 Filled perforation

$$v_{c} = 15v_{t} \cdot \left[\frac{D_{p} \cdot v_{t} \cdot \rho_{l}}{u_{l}}\right]^{0.39} \cdot \left[\frac{d_{g} \cdot v_{t} \cdot \rho_{l}}{u_{l}}\right]^{-0.73} \cdot \left[\frac{\rho_{g} - \rho_{l}}{\rho_{l}}\right]^{0.17} \cdot [C_{s}]^{0.14}$$

Squeezing Gravel-Pack in Multi-Layer Well: Models

M4: Multi-layer flow model

Under the condition of given total injection displacement Q and bottom hole pressure P_{wf} , Injection ratio R_{ai} by layer

$$Q = A \cdot \sum_{i=1}^{m} k_i h_i (P_{wf} - P_{ri}) \qquad R_{qi} = \frac{k_i h_i (P_{wf} - P_{ri})}{\sum_{i=1}^{m} k_i h_i (P_{wf} - P_{ri})}$$

Considering the deficit of sand production, the comprehensive degree of the deficit of sand production is represented by the index B_i

Modified indicator B_i:
$$B_a = \frac{\sum_{i=1}^m B_i}{m}$$
 $B_{xi} = B_i - B_a$

Modified indicator B_i:
$$B_a = \frac{\sum_{i=1}^m B_i}{m}$$
 $B_{xi} = B_i - B_a$
Injection ratio R_{qi}: $R_{qi} = R_{qi} * 0.85 + B_{xi} * 0.15$ $\sum_{i=1}^m R_{qi} = 1.0$

Actual injection volume per single layer: $Q_i = Q \cdot R_{ai}$

Squeezing Gravel-Pack in Multi-Layer Well: Optimization

- **Optimization basis**: Physical properties of the target layer, degree of sand deficit, properties of the sand-carrying fluid, and characteristics of the packing material.
- Optimization objectives: Gravel packing volume, sand ratio, displacement, annulus pressure differential/shunt squeeze pressure differential, and pump injection procedure.
- Optimization principle: Ensure dense packing in the annulus, thorough packing of perforation tunnels, and effective packing of large-scale sand deficit cavities outside the perforation zone.

Squeezing Gravel-Pack in Multi-Layer Well: Optimization

Gravel-Pack Volume Design

$$V_{gi} = \frac{\pi}{4} d_{ci}^2 \cdot L_{kd} + \frac{\pi}{4} (d_{ci}^2 - d_{so}^2) \cdot L_{scr}$$

$$V_{gp} = \frac{\pi}{4} d_p^2 \cdot L_p \cdot h_p \cdot S_D$$

◆ Optimization Principle: Based on the simulation results of the sand deficit pattern in the reservoir, the sand cavities volume was calculated

Total gravel packed volume Vg $V_g = (V_{gi} + V_{gp} + V_{go}) \cdot \beta$

Squeezing Gravel-Pack in Multi-Layer Well: Optimization

Packing scale design (KH value - sand deficit volume)

Compact ring-packed casing pressurization design plate (sand degree index - displacement)

Plate for selection of packing material particle size

Packing Displacement Design Plate (KH Value - Degree of Sand Production Index Ca)

Construction Sand Ratio Design Plate (proppant grain size - construction displacement)

Squeezing Gravel-Pack in Multi-Layer Well: Case Study

Well Completion Method	Perforation	Pressure-bearing annulus packing	
Perforation density/(1/m)	12.0	Perforation diameter/mm	12.0
Viscosity of liquid/mPa.s 1.050		Perforation length/mm	0.45
Packing material	Quartz sand	Material density/(kg/m³)	1632
Particle size/mm	0.45 - 0.90	Squeezing Gravel-Pack amount /m ³	3.32

	Procedures	Liquid amount/ m ³	Sand ratio/%	amount of gravel/m³	Sand carrying volume/ m ³	Displac ement/(m³/min)	Time /min	Maximum pump pressure/MPa
1	Cycle washing	3.00			3.00	0.70	4.29	23.82
2	Squeezing Gravel-Pack	33.20	5.0	1.66	34.28	0.70	48.97	23.82
3	Squeezing Gravel-Pack	23.71	7.0	1.66	24.79	0.70	35.42	23.82
4	Cyclic packing	24.60	5.0	1.23	25.40	0.70	36.29	23.82
5	Replacement	5.51			5.51	1.00	5.50	19.13

 According to the simulation results, the sand packing volume and packing rate in the four layers from top to bottom are 0.09m³/100%, 2.38m³/93.6%, 0.41m³/100% and 0.32m³/100%, respectively.

Squeezing Gravel-Pack in Multi-Layer Well: Case Study

Conclusion

Accurate Sand Production Prediction

The microstructural model and multi-layer simulation provide reliable predictions of sanding cavities and their patterns, guiding effective sand management.

Optimized Squeezing Gravel-Pack Strategies

By integrating multiple models, our approach allows precise optimization of packing parameters, ensuring enhanced performance in complex multi-layer wells.

> Case Study Results

The simulation-driven packing design resulted in high efficiency, with over 93% packing rates across critical layers, demonstrating the model's practical effectiveness.

Sustainable and Cost-Effective

This comprehensive method balances performance, and environmental impact, offering a robust solution for sustainable sand control management.

Thanks!

Welcome any communication and cooperation!

Contact Information:

Changyin Dong Doctor, Professor

- -Production and Sand Control Completion Lab.(PSCCL)
- -Research Institute of Oil & Gas Production, School of Petroleum Engineering, China University of Petroleum (East China)
- -Address: 66, Changjiang Xi Road, Huangdao District, Qingdao, Shandong, P.R. CHINA, 266580
- -Phone/Fax: +86-532-86981910 -Mobile Phone: +86-18669884860
- -QQ/WeChat: 175659383/F175659383 -Email: dongcy@upc.edu.cn dongcy@sandcontrol.com.cn
- -PSCCL Website: http://www.sandcontrol.com.cn/english
- -PSCCL WeChat: http://www.sandcontrol.com.cn/wechat.htm

Concentrating for 20 years

PSCCL WeChat