

Sustainable Sand Management Control and Solutions - Balancing Performance, Costs, and Environment

20–21 AUGUST 2024 | KUALA LUMPUR, MALAYSIA

Sustainable Sand Management Control and Solutions - Balancing Performance, Costs, and Environment

Squeezing Gravel-Pack in Multi-Layer Well with Sanding Cavities in Formation: Simulation, Optimization and Case Study

Zhou Bo Production and Sand Control Completion Laboratory China University of Petroleum (East China)

流固控制与开采完井实验室 roduction and Solid-Fluid Control Completion Lab.

Content

Simulation of sanding Cavities Part 1 Part 2

- **Rationale**
- **Prediction method**
- **Simulation results**
- **Pattern management**

Simulation of squeezing gravel-pack

- **Rationale**
- **Models**
- **Optimization**
- **Case Study**

Simulation of sanding Cavities: Rationale

Boundary (Wellbore

Simulation of sanding Cavities: Prediction method

- Particles as objects (POM) microstructural model
- Particle size and shape distribution
- Physical heterogeneity characterization
- Random distribution of physical properties generally consistent with the physical manifestations

Diagrammatic sketch of principle of sand production simulation method

Simulation of sanding Cavities: Prediction method

What can we obtain?

- Sand production Cavity volume
- Sanding Cavities pattern/profile
- The scope of sanding damage
- Sand damage degree
- Sand production degree index

Simulation of sanding Cavities: Simulation results

Simulation of a single-layer sand production cavities:

A single-layer sample

- The sand production form in the range of 0.4-1.0m
- The sanding damage range is 1.88 m, the average damage degree is 0.37, and the sanding degree index is 0.211.

0.64 1223.00 1223.42 1223.83 1224.25 1224.67 1225.08 1225,50 1225.92 1226.22 1226.75 1227.17 1227.58 1228.00 1231.50 1231.88 1232.27 1232 A 1233.03 1233.42 1233.80 1241.6 1242.00 1242.38 1242.75 1243.13 1243.50 1243.88 1244.25 1244.63 1245.00 **内容强度分布/M** 0.370.57 0.76 0.95 1.14 1.330.00 0.20 0.40 0.60 0.801.00

1.84 2.71 3.58 4.45 5.32 6.19 7.05

Three layers of sand production cavities simulation:

- The sand production difference between layers is obvious.
- The sand production ranges of the three layers are 0.937 m, 1.068 m and 2.463 m, respectively.

Up to 8 layers can be simulated simultaneously

Simulation of sanding Cavities: Pattern management

Pattern A : Complete reservoir morphology, no sand pores and cavities. **Pattern B** : The formation has different degrees of sand deficit, but the skeleton structure is complete.

Pattern B1 : Pore liquefaction form, but the formation skeleton is complete. **Pattern B2 :** The formation skeleton was slightly damaged.

Pattern B3 : Earthworm-like hole shape

Pattern C : large hole form, formation sand production is serious.

Pattern A **Pattern B1** Pattern B1 Pattern B2 Pattern B3 Pattern C

Squeezing Gravel-Pack in Multi-Layer Well: Rationale

Squeezing Gravel-Pack in Multi-Layer Well: Models

- M1: Oil pipeline pumping friction model
- M2: Casing return flow friction model
- M3: Single-layer suction index model
- M4: Multi-layer flow balance model
- M5: Casing flow balance model
- M6: Sand discharge deficit filling model

All data models integrated into the software *Sandcontrol* **Office,** an integrated decision-making software platform for solids control.

 Pin/Qin

Squeezing Gravel-Pack in Multi-Layer Well: Models

 $\mathcal{C}_g =$

 $R_g(1-\varphi_g$

 $R_g(1-\varphi_g)+1$

M1: Oil pipeline pumping friction model

⚫ **Solid-liquid mortar physical property calculation model** ⚫ **Sand-carrying liquid and solid-liquid mortar pipe flow friction model**

> ⚫ **Modeling of orifice flow friction pressure drop**

⚫ **Horizontal flow gravel**

deposition model

$$
\frac{dP}{dh} = \rho_m g \sin \theta + f_m \frac{\rho_m v_m^2}{D} \frac{v_m^2}{2}
$$

$$
\left(\Delta P_f\right)_{perf} = \alpha \frac{B\rho q_0^2}{d_0^4} \bigg(\frac{L_p}{L_{p0}}\bigg) \text{ Unfilled performance}
$$

$$
\Delta P = \alpha (q \cdot \frac{\mu B L_p}{\pi k_p h_p S_D r_p^2} + q^2 \cdot \frac{\beta_p \rho B^2 L_p}{\pi^2 h_p^2 S_D^2 r_p^4})
$$
 Filled performance

 $V_g=V_{gb}(1-\varphi_g) \qquad \rho_{gb}=\rho_g(1-\varphi_g) \qquad V_m=V_{gb}(1-\varphi_g)+V_l$

 $R_g(1-\varphi_g)\cdot \rho_g + \rho_l$

 $R_g(1-\varphi_g)+1$

 $\rho_m =$

$$
v_c = 15v_t \cdot \left[\frac{D_p \cdot v_t \cdot \rho_l}{u_l}\right]^{0.39} \cdot \left[\frac{d_g \cdot v_t \cdot \rho_l}{u_l}\right]^{-0.73} \cdot \left[\frac{\rho_g - \rho_l}{\rho_l}\right]^{0.17} \cdot [\mathcal{C}_s]^{0.14}
$$

Squeezing Gravel-Pack in Multi-Layer Well: Models

M4: Multi-layer flow model

Under the condition of given total injection displacement Q and bottom hole pressure P_{wf} , Injection ratio R_{qi} by layer

$$
Q = A \cdot \sum_{i=1}^{m} k_i h_i (P_{wf} - P_{ri}) \qquad R_{qi} = \frac{k_i h_i (P_{wf} - P_{ri})}{\sum_{i=1}^{m} k_i h_i (P_{wf} - P_{ri})}
$$

Considering the deficit of sand production, the comprehensive degree of the deficit of sand production is represented by the index B_i

 $B_a =$ $\sum_{i=1}^m B_i$ \overline{m} **Modified indicator B_i:** $B_a = \frac{\sum_{l=1}^{n} B_l}{m}$ $B_{xi} = B_i - B_a$ **Injection ratio R_{qi}:** $R_{qi} = R_{qi} * 0.85 + B_{xi} * 0.15$ $i=1$ \overline{m} $R_{qi} = 1.0$ Actual injection volume per single layer : $Q_i = Q \cdot R_{ai}$

Squeezing Gravel-Pack in Multi-Layer Well: Optimization

- **Optimization basis** : Physical properties of the target layer, degree of sand deficit, properties of the sand-carrying fluid, and characteristics of the packing material.
- **Optimization objectives** : Gravel packing volume, sand ratio, displacement, annulus pressure differential/shunt squeeze pressure differential, and pump injection procedure.
- **Optimization principle** : Ensure dense packing in the annulus, thorough packing of perforation tunnels, and effective packing of large-scale sand deficit cavities outside the perforation zone.

, Qr

Squeezing Gravel-Pack in Multi-Layer Well: Optimization

Gravel-Pack Volume Design

a. Amount of gravel packed in the wellbore Vgi

 $V_{gi} =$ π 4 $d_{ci}^2 \cdot L_{kd} +$ π 4 $d_{ci}^2-d_{\rm so}^2\bigr)\cdot L_{\rm scr}$

b. Perforation hole volume gravel amount Vgp $V_{gp} =$ π 4 $d_p^2 \cdot L_p \cdot h_p \cdot S_D$

c. Amount of gravel packed in the formations outside the pipe Vgo:

◆ Optimization Principle: Based on the simulation results of the sand **deficit pattern in the reservoir, the sand cavities volume was calculated**

Total gravel packed volume Vg $V_a = (V_{ai} + V_{ap} + V_{ao}) \cdot \beta$

Squeezing Gravel-Pack in Multi-Layer Well: Optimization

Plate for selection of packing material particle size

Degree of Sand Production Index Ca)

Construction Sand Ratio Design Plate (proppant grain size - construction displacement)

Squeezing Gravel-Pack in Multi-Layer Well: Case Study

⚫ **According to the simulation results, the sand packing volume and packing rate in the four layers from top to bottom are 0.09m³/100%, 2.38m³/93.6%, 0.41m³/100% and 0.32m³/100%, respectively.**

Squeezing Gravel-Pack in Multi-Layer Well: Case Study

Conclusion

➢ **Accurate Sand Production Prediction**

The microstructural model and multi-layer simulation provide reliable predictions of sanding cavities and their patterns, guiding effective sand management.

➢ **Optimized Squeezing Gravel-Pack Strategies**

By integrating multiple models, our approach allows precise optimization of packing parameters, ensuring enhanced performance in complex multi-layer wells.

➢ **Case Study Results**

The simulation-driven packing design resulted in high efficiency, with over 93% packing rates across critical layers, demonstrating the model's practical effectiveness.

➢ **Sustainable and Cost-Effective**

This comprehensive method balances performance, and environmental impact, offering a robust solution for sustainable sand control management.

Thanks!

Welcome any communication and cooperation!

Contact Information:

Changyin Dong Doctor, Professor

-Production and Sand Control Completion Lab.(PSCCL)

-Research Institute of Oil & Gas Production,School of Petroleum Engineering, China University of Petroleum(East China)

-Address:66, Changjiang Xi Road, Huangdao District, Qingdao, Shandong, P.R. CHINA, 266580

-Phone/Fax:+86-532-86981910 -Mobile Phone: +86-18669884860

-QQ/WeChat: 175659383/F175659383 -Email: dongcy@upc.edu.cn dongcy@sandcontrol.com.cn -PSCCL Website: <http://www.sandcontrol.com.cn/english>

-PSCCL WeChat: <http://www.sandcontrol.com.cn/wechat.htm> PSCCL Website PSCCL WeChat

Production and Sand Control Completion Lab. College of Petroleum Engineering, China University of Petroleum Concentrating for 20 years

