Internal Use - Authorized for External distribution

Sustainable Sand Management Control and Solutions -Balancing Performance, Costs, and Environment

20–21 AUGUST 2024 | KUALA LUMPUR, MALAYSIA

Sustainable Sand Management Control and Solutions -Balancing Performance, Costs, and Environment

Utilizing a Hybrid of Chemical and Mechanical Approach for Effective Sand Production Mitigation: Successful Field Trial in Malaysia

Nur Anisah Binti Shafie & Suzalina Binti Zainal PETRONAS

Outline

- Introduction
- □ Field Case
- □ Laboratory Evaluation
- □ Field Info and Sampling
- Laboratory Results
- □ Trial Execution
- □ Monitoring
- Conclusion
- Acknowledgement

Introduction

TOY global oil and gas reserves in world are affected by sand production

Due to:

Inadequate cementation Increased water cut

Production Deferment and Idle Wells

- Unplanned shutdown and downtime
- Limit production rate to control sand
- Shut-in of wells in severe cases

Equipment failure

EQUIPMENT

3-1/2*9.2# L80 JFE FO

9-5/8*SHOE

6" HOLE TO 89

561

3-1(2" Bulblup (EOT)

Field Case

□ Single string, horizontal oil producer, first commence 2014 □ 225-micron open hole stand alone sand screen (OHSAS) □ High sand production average 47 pptb □ Continuous sand build up and well idle in 2019 \Box D10 > 225-micron indicate OHSAS failure

□ Proposed solution:

Screen change out to 200-micron ERTSS + Sand Agglomeration

Well Completion Diagram

8.9 X-OVER 4-1/2" VT BOX X FOK PIN

4-1/2*12 ## L80 FOX BLANK

X-DVER 4-127 FOX BOX X VT RIN

ALC: DODOMAX SOREEN 225 MIC 41/2" SWELL PACKER (TENDEKA)

O DO MAY SODE EN 215 M

5 4-1/2* SWELL PACKER (TENDEKA)

43.5 41/2"x 3.250" SEAL BORE EXT

2366.7 4-1/2" x 3 250" SEAL BORE EXT

2372.3 4-1/2" FLOAT SHO

3,958 4.500

3.958 4.500

3.958 4.500 5.750

3.958

1.958 5.165

3,958 8.760

5.185

5.050

5.050

5.520

cause plugging.

SPE Workshop

Dual polymerStronger aggregatesLarger aggregate

Confidential

Laboratory Evaluation

• Core sample

- Produced water
- Crude oil
- Water cut
- Sand count
- Screen size
- Note:
- Uc : Uniformity Coefficient
- Sc : Sorting Coefficient
- **PSD** : Particle Size Distribution

- Mineralogy
- Morphology
 - Baseline PSD
 - Water Analysis

Agglomeration bottle test

Agglomeration

Bottle Test

- Physical Observation
- PSD Treated vs Untreated
- Calculate Uc & Sc

Compatibility Test

Compatibility with incumbent production chemicals

Field Info and Sampling

Parameters	Information
Temperature	68 ⁰ C
Water Cut	60%
Average Sand Count	47 pptb
Sand Screen Size	200-micron ERTSS

Sample	Remarks
Sand Sample	Unconsolidated core sample
Produced Water	Wellhead sample
Crude Oil	Wellhead sample
Incumbent Chemicals	Demulsifier

Laboratory Results – Agglomeration Test

With agglomeration chemical: □ Increased sand size □ Increased % of population > 200 µm □ Improved Uc □ Improved Sc

Sand in water and mixture oil/water

Sand D50, μm > 200 μm, Vol. % Uc, (D40/D90) Sc (D10/D95)	
Untreated 76 0.3 4.9 11.6	
Treated 1260 100 1.7 2.9	3

Sc < 10	well sorting
Sc > 10	poor sorting
Uc < 3	uniform
Uc < 3 3 <uc< 5<="" td=""><td>uniform non-uniform</td></uc<>	uniform non-uniform

Sand in water and mixture oil/water

10 minutes

Laboratory Results – Compatibility Test

Tube Sequence	Fluid	Composition by Volume %
1	Blank	60% Water + 40% Crude Oil + 5 ppm Demulsifier
2	* Backflow Liquid 1	50% Blank + 50% Component B
3 *	* Backflow Fluid 2	50% Blank + 25% Component A + 25% Component B
4 **	* Flushing Liquid 1	Blank 75% + 25% Component A
5	Flushing Liquid 2	Blank 75% + 25% Component B

*To simulate the unreacted Polymer B going to flow into the system

**To simulate reacted polymer A & B going into the system.

***To simulate the unused chemicals from dead volume if plan to be injected into the system. Can be neglected if the plan to collect and send onshore as scheduled waste.

Emulsion Tendency

- No microemulsion and emulsion pad developed.
- Most separation (oil and water) occurred within 10 minutes.
- Water phase show good clarity after 10 minutes
- All samples show good flowability.

Trial Execution

Polymer A & B was separately mixed (dissolved in treated seawater) at offshore using 50 bbls batch mixer **SPE** workshop

Bullhead injection Volumes for 1-ft from wellbore

Injection Sequence

75 bbls Component A95 bbls Component B17 bbls postflush 3% KCI

Well

Ocen Hole

Monitoring 3-months well flow back, sampling and monitoring

Conclusion / Summary

The trial has proven the success of sand agglomeration chemical at enhancing performance of downhole sand screen in managing sand production.

- ✓ 300 bopd idle well reactivation
- ✓ 81% reduction in sand count (from 47 pptb to 8.76 pptb)
- \checkmark 37% reduction in fines
- ✓ Project delivered with positive NPV pay-out within 5 months.

Acknowledgement

PETRONAS Group Technology & Commercialization (GT&C) PETRONAS Carigali Sdn Bhd

Internal Use - Authorized for External distribution

Thank You

Internal Use - Authorized for External distribution

Q & A