

Sustainable Sand Management Control and Solutions -Balancing Performance, Costs, and Environment

20-21 AUGUST 2024 | KUALA LUMPUR, MALAYSIA

Sustainable Sand Management Control and Solutions -Balancing Performance, Costs, and Environment

Facilities Sand Impact Assessment: Using Published Correlations for Sand Transport to Identify Focus Areas

Muizz Rabaha

Brunei Shell Petroleum Co. Sdn. Bhd.

Introduction

- BSP Topsides largely not designed to monitor or handle sand or fines.
- Two offshore assets, One onshore asset: ~8XX well strings. Risk of sand production likely to increase over the years.

Overall Improvement Strategy

- Sand Management is key for improving WRFM Performance and Reliability.
 - Sand Management Improvement Strategy released early 2024:
 - Short-term actions will be OPEX-heavy
 - Long-term actions consider CAPEX investments to...
 - Manage future OPEX and reliability goals, considering the approach towards late-life production.
 - Move from excluding sand from surface, to including and managing sand at surface.
 - Prediction on both wells (sand production) and topsides (sand transport) to help identify high-risk areas and guide prioritisation of efforts.
 - Monitoring / surveillance across the system to collect data and trigger actions to prevent escalation.
 - Manage maintenance activities, especially when sand is allowed to be produced.

Facilities Impact Assessment

	Well	Pipeline	Separator	Valve	Pump	Tank
Data	 Sand risk assessments Sand samples Flowline Inspection 	 Debris collected during pigging activities 	 Solids collected during vessel cleaning activities 	 Analyse performance of control valve against design Frequency of equipment failure 	 Analyse performance of pump against design Frequency of equipment failure 	 Solids collected during vessel cleaning activities
Prediction	 Likelihood of sand production Erosion assessment 	 Likelihood of sand deposition 	 Cut-off size of particle deposition (Stoke's law) 	 Predict when a valve will be plugged or eroded beyond a limit 	 Predict when a pump requires to be replaced 	
Monitoring	 Prevent vs limit? Real-time vs frequency? 		 Manage limit Trigger vessel cleaning 	Proactive replacement	Proactive replacement	 Manage limit Trigger vessel cleaning
Prevention	Value: unlock Locked-In potential, Maintain Reliability (no gains) and Manage Performance (no gains)					
Correction	Cost: OPEX vs CAPEX Timeline: When will OPEX be too much to handle sand?					

Sand Transport Prediction in Pipelines

- Stevenson & Thorpe 1999:
 - Predict critical velocity in intermittent (slug) multiphase flow regime
 - $j_f = 0.34\sqrt{gD} \frac{j_g}{4.75}$
 - j_f = superficial fluid velocity (m/s)
 - j_g = superficial gas velocity (m/s)
 - g = acceleration due to gravity (m/s²)
 - D = pipe diameter (m)
 - Correlation is independent of particle size and liquid viscosity

Stevenson & Thorpe 1999

- Validate Correlation with Pigging:
 - Lines 3 & 4: expect no debris during pigging
 - Lines 1 & 2: expect debris, pigging should be designed accordingly
- Use the prediction to:
 - Design pigging program
 - Use to shortlist piping that has potential for erosion due to sand

Potential Scale-up

- Digitalisation & Visualisation
 - Integrate with real-time field data to estimate build-up inside pipeline.
 - Integrate with piping inspection data as a means to "monitor" for sand where direct sand monitoring is poor.
 - Visualise the hotspots, together with the value the lines carry.
 - Anticipate which equipment will be affected due to changes in sand production, pre-empt actions to manage performance and reliability.
 - Focus OPEX on safety- & production-critical lines, as well as lines with high production value.
 - Anticipate OPEX demand vs CAPEX investment (lifecycle sand management assessment)

Thank You