

Sustainable Sand Management Control and Solutions Balancing Performance, Costs, and Environment

20–21 AUGUST 2024 | KUALA LUMPUR, MALAYSIA

Sustainable Sand Management Control and Solutions - Balancing Performance, Costs, and Environment

Low-Cost Numerical Simulation for Sand Screen Retention Test (SRT) Lab

Abdul Adri Bin Haji Wardi Universiti Teknologi Brunei

OBJECTIVES

- Match SRT lab permeability tests through numerical simulations
- Minimize computational costs:
 - Batched simulations with smaller domains
 - Utilizing spherical particles
 - Harmonic averaging

METHODOLOGY

- Discretize filter cake model using Particle Size Distribution (PSD) data utilizing
 Discrete Element Method (DEM)
- Fluid flow simulation using Finite Element Method (FEM) + Smoothed Particle Hydrodynamics (SPH).
- Primary software (Open-Sourced):
 - Yade 2023.02 (CPU)
 - DualSPHysics v5.2 (GPU)

SIMULATION SETTINGS

Setup:

- Dimensions (1mm x 1mm x 100mm)
- Sphere properties
- Inlet velocity

Post-processing:

- Flowtool to measure flow rate
- Differential pressure
- Permeability calculation

WORKFLOW

Gravity Deposition Fluid flow through filter cake

DATA AVAILABLE/USED

- 9 Samples
- PSD ranges:
 - o 53 180 um
 - 53 600 um
 - o 63 212 um
 - 125 600 um
 - o 150 180 um

d10	196.43 μm
d50	81.62 µm
d90	16.49 µm

RESULTS - PSD Generated

RESULTS - Experimental vs Simulation Permeability

88% in range

OBSERVATIONS

- Successfully duplicate experimental permeability values
- With minimal computational requirements, possible to achieve consistency in results

FUTURE WORKS

- Clay content: model clay behavior (cohesion)
- Intermolecular forces effect on mesh and permeability results
- Integrate non-spherical assumptions whilst minimizing computational costs
- Solid produced utilizing fully DEM + SPH