

Society of Petroleum Engineers

Gas Field Development and Production – State of Play

15 – 16 January 2024 | BANGKOK, THAILAND

[Open]

Analytical Model for Well Injectivity Prediction on CO₂ Injection in Heterogeneous Reservoirs

Siti Rohaida Mohd Shafian¹, Nazliah Nazma Bt Zulkifli¹, M Iqbal Mahamad Amir¹, Pavel Bedrikovetski²

¹PETRONAS

²The University of Adelaide

Outline

- Overview Carbon capture and storage (CCS)
- Factor causes CO₂ injectivity declines
- Development of analytical model workflow
- Expression of well impedance during CO₂ injections
- New analytical formulae for well impedance
- Results
- Summary
- Conclusions
- Acknowledgements

Positioning to future new normal, refresh Technology Agenda is imminent to deliver MFT 50.30.0 and supporting future growth areas for PETRONAS

[Open]

Overview - Carbon capture and storage (CCS)

- CCS process that involves capturing the CO2 at its source & storing it permanently subsurface
- PETRONAS is currently embarking an opportunity for CO2 storage at oil & gas reservoir and deep saline aquifer for short- and long-term geo-sequestration
- However, CO₂ storage into aquifers has greater complexity, as it causes various hydro-physical, chemical, and geomechanical interactions that affect the injectivity of wellbores

CO₂ trapping mechanism

Ref. Hasan et al. 2021,

[Open]

Factor causes CO₂ injectivity declines

[Open]

Dissolution of rock in carbonic acid with release of solid particles

Workflow for Development of analytical model

Expression of well impedance during CO₂ injections

Well impedance versus dimensionless time at different damage ratios for c=0.5 in power-law profile

New analytical formulae for well impedance

The impedance, J is determined by

- (iii) in water zone (late time)

Field data: k(z) or g(k) – permeability distribution; CO₂ and water viscosities; Lab data: D is the ratio between the damaged and initial permeabilities

Introduced analytical model for 2 phase flow with formation damage

Sweep coefficient evolution

Well impedance versus dimensionless time at different damage ratios for c=0.5 in power-law profile

The higher is the induced formation damage, D the higher the well impedance, J and skin factor, S of the injection well, and the higher the sweep coefficient

Results (1/2) Application of analytical modelling for sweep efficiency and well index calculation Case study Field LW

Field overview

- Shallow offshore (60 m water depth)
- Depleted gas reservoir with weak aquifer support (21 production wells)
- Reservoir gas 13% CO₂
- Depositional environment shallow marine clastic

Reservoirs	E-20/25	E-40/45/50	D-32/36
Reservoir temperature (°F)	235	250-260	214
Latest average reservoir pressure (psia)	600	800	700
Statistical parameters for permeability histograms			
Minimum	0	0	0
Maximum	2450	995	4000
Mean	72.30	64.28	320.18
Standard Deviation	235.15	116.89	504.80
Skewness	8.69	3.71	2.42
Kurtosis	86.87	20.28	8.89

Results (2/2)

Application of analytical modelling for sweep efficiency and well index calculation Well impedance versus dimensionless time when damage factor changes from 1 to critical value 0.016

Summary

- The analytical model allows derivation of the explicit formulae for well impedance / skin factor and sweep coefficient evolution during formation damage accumulation induced by CO₂ injection
- The higher is the induced formation damage, the higher the well impedance and skin factor of the injection well, and the higher the sweep coefficient due to creation of additional hydraulic resistance to the injected gas. So, formation damage increases gas storage capacity of the geological formation

Conclusion

The analytical model for CO_2 injection in heterogenous with inter-layer communications for prediction of well injectivity and the reservoir sweep efficiency will guide the decision making for an effective CCS projects because formation damage not only makes it difficult to inject, at the same time increases the storage capacity

Acknowledgements

PETRONAS Research Sdn Bhd PETRONAS Carigali Sdn Bhd The University of Adelaide

THANK YOU

[Open]

Development of analytical model - general

The analytical model allows derivation of the explicit formulae for well impedance / skin factor and sweep coefficient evolution during formation damage accumulation induced by CO₂ injection

