Please fill in the name of the event you are preparing this manuscript for.	International Petroleum Technology Conference 2023 (15th IPTC)
Please fill in your 5-digit IPTC manuscript number.	IPTC-22982-Abstract
Please fill in your manuscript title.	Origin of nitrogen and carbon dioxide in natural gas: implications for the risk of high N_2 exploration in siliciclastic and carbonate formations

Please fill in your author name(s) and company affiliation.

Given Name	Surname	Company
Mohammad A.	Alrowaie	Saudi Aramco, EXPEC Advanced Research Center
Ranya A.	Algeer	Saudi Aramco, EXPEC Advanced Research Center
Salman M.	AlQathami	Saudi Aramco, EXPEC Advanced Research Center
Feng H.	Lu	Saudi Aramco, EXPEC Advanced Research Center

This template is provided to give authors a basic shell for preparing your manuscript for submittal to an IPTC meeting or event. Styles have been included (Head1, Head2, Para, FigCaption, etc) to give you an idea of how your finalized paper will look before it is published by IPTC. All manuscripts submitted to IPTC will be extracted from this template and tagged into an XML format; IPTC's standardized styles and fonts will be used when laying out the final manuscript. Links will be added to your manuscript for references, tables, and equations. Figures and tables should be placed directly after the first paragraph they are mentioned in. The technical content of your paper WILL NOT be changed. Please start your manuscript below.

Abstract

Scope / Objective

Understanding the origin of non-hydrocarbons encountered in the exploration and production process is crucial to reduce the investment risks and help resolving the geological challenges in the subsurface. Nitrogen (N_2) and (CO_2) are two of the most common non-hydrocarbons in natural gas. The investigation of the N_2 and CO_2 origin and content changes will help to provide geochemical evidence for predicting the gas quality and types prior to drilling.

Methods

In this study, gas compositional analysis and carbon isotope are used to assess the origin and the distribution of both N_2 and CO_2 in siliciclastic formations.

Results/discussion

The results display that N₂ content vary widely (0.1-7 mole, %) in the siliciclastic formation. Based on the N₂ content and the carbon isotopic composition of hydrocarbons, we have classified the natural gases found the siliciclastic intervals into three genetic types: (I) oil-associated gas with high N₂ content, (II) dry gas with low N₂ content, and (III) mixed gas with intermediate content of N₂. The carbon isotopic composition values of CO₂ ($\delta^{13}C_{CO2}$) for the three groups are distinguishable and correlate well with the N₂ contents. Oil-associated gas group is characterized by depleted ¹³C values (-13 to -7‰) for $\delta^{13}C_{CO2}$, suggesting an organic CO2 source. In contrast, the dry gas with low N₂ content is characterized enriched ¹³C values (-3 to 2‰) for $\delta^{13}C_{CO2}$, suggesting an inorganic CO2 source. Group (III) shows is characterized by intermediate $\delta^{13}C_{CO2}$ values, which also indicate the presence of mixing between the two end-member of gases (i.e., groups 1 and 2). Our geochemical and geological data suggest that a deep N₂ gas source in not relevant. Therefore, high N₂ concentration could be originated from the decomposition of organic matter at high mature stage and/or it could be derived from ammonium clays.

For the studied carbonate interval, we have classified the natural gases into dry gas with high N_2 contents. The carbon isotopic compositions measured from the dry gases with high N_2 contents are extremely enriched in ¹³C for methane and depleted in ¹³C for the CO₂, suggesting an alteration by thermochemical sulfate reduction. High N_2 content in the dry gas is directly associated with the destruction of methane via TSR and the precipitation of H₂S as ZnS and PbS. Further data from the nitrogen isotopic composition is needed to better determine the origin of high nitrogen.

Novelty

This study has an important application in determining the origin of non-hydrocarbons, which can directly affect the prediction of the quality of gas in the subsurface.