Petroleum Engineering Handbook

Petroleum Engineering Handbook

Larry W. Lake, Editor-in-Chief

- I General Engineering John R. Fanchi, Editor
- II Drilling Engineering Robert F. Mitchell, Editor
- III Facilities and Construction Engineering Kenneth E. Arnold, Editor
- IV Production Operations Engineering Joe Dunn Clegg, Editor
- V Reservoir Engineering and Petrophysics Edward D. Holstein, Editor
- VI Emerging and Peripheral Technologies H.R. Warner Jr., Editor
- VII Indexes and Standards

Petroleum Engineering Handbook

Larry W. Lake, Editor-in-Chief U. of Texas at Austin

Volume VII Indexes and Standards

Society of Petroleum Engineers

© Copyright 2007 Society of Petroleum Engineers

All rights reserved. No portion of this book may be reproduced in any form or by any means, including electronic storage and retrieval systems, except by explicit, prior written permission of the publisher except for brief passages excerpted for review and critical purposes.

Printed in the United States of America.

The paper used in this book meets the minimum requirements of ANSI/NSIO Z39.48-1992 (R1997).

ISBN 978-1-55563-124-6 (print)
ISBN 978-1-55563-125-3 (CD)
ISBN 978-1-55563-134-5 (print and CD)
ISBN 978-1-55563-126-0 (Complete 7-Vol. Set, print)
ISBN 978-1-55563-127-7 (Complete 7-Vol. Set, CD)
ISBN 978-1-55563-135-2 (Complete 7-Vol. Set, print and CD)

07 08 09 10 11 12 13 14 / 9 8 7 6 5 4 3 2 1

Society of Petroleum Engineers 222 Palisades Creek Drive Richardson, TX 75080-2040 USA

http://store.spe.org/ service@spe.org 1.972.952.9393

Contents

SPE Symbols Standard

Overview of the SPE Symbols Standard

Principles of Symbols Selection

Since the original reservoir *Symbols Standard* was established in 1956, the principles used in the selection of additional symbols have been as follows.

1. (A) Use single letters only for the main letter symbols. This is the universal practice of the American Natl. Standards Inst. (ANSI), the Intl. Organization for Standardization (ISO), and the Intl. Union of Pure and Applied Physics (IUPAP) in more then 20 formal standards adopted by them for letter symbols used in mathematical equations.

(B) Make available single and multiple subscripts to the main letter symbols to the extent necessary for clarity. Multiple letters, such as abbreviations, are prohibited for use as the main symbol (kernel) for a quantity. A few exceptions are some traditional mathematical symbols, such as log, ln, and lim. Thus, quantities that are sometimes represented by abbreviations in textual material, tables, or graphs are required in the *SPE Symbols Standard* to have single-letter kernels. Examples are gas/oil ratio (GOR), bottomhole pressure (BHP), spontaneous potential (SP), and static SP (SSP), which have the following SPE standard symbols: R, p_{bh} , E_{SP} , and E_{SSP} , respectively.

- 2. Adopt the letter symbols of original or prior author usage, where *not* in conflict with Principles 3 and 4.
- 3. Adopt letter symbols consistent or parallel with the existing *SPE Symbols Standard*, minimizing conflicts with that *Standard*.
- 4. Where pertinent, adopt the symbols already standardized by such authorities as ANSI, ISO, or IUPAP (see Principle 1); minimize conflicts with these standards.
- 5. Limit the list principally to basic quantities, avoiding symbols and subscripts for combinations, reciprocals, special conditions, etc.
- 6. Use initial letters of materials, phase, processes, etc., for symbols and subscripts; they are suggestive and easily remembered.
- 7. Choose symbols that can be readily handwritten, typed, and printed.

Principles of Letter Symbol Standardization

Requirements for Published Quantity.

- 1. Symbols should be standard where possible. In the use of published symbols, authors of technical works (including textbooks) are urged to adopt the symbols in this and other current standards and to conform to the principles stated here. An author should provide a Nomenclature list in which all symbols are listed and defined. For work in a specialized or developing field, an author may need symbols in addition to those already contained in standards. In such a case, the author should be careful to select simple, suggestive symbols that avoid conflict in the given field and in other closely related special fields. Except in this situation, the author should not introduce new symbols or depart from currently accepted notation.
- 2. *Symbols should be clear in reference.* One should not assign different meanings to a given symbol in such a manner as to make its interpretation in a given context ambiguous. Conflicts must be avoided. A listed alternative symbol or a modifying subscript is often available and should be adopted. Any symbol not familiar to the reading public should have its meaning defined. The units should be indicated whenever necessary.
- 3. *Symbols should be easily identified.* Because of the many numerals, letters, and signs that are similar in appearance, a writer should be careful in calling for separate symbols that in published form might be confused by the reader. For example, many letters in the Greek alphabet (lower case and

capital) are practically indistinguishable from English letters, and the zero is easily mistaken for the capital O.

4. *Symbols should be economical in publication.* One should try to keep the cost of publishing symbols at a minimum: no one work should use a great variety of types and special characters; handwriting of inserted symbols, in copy largely typewritten and to be reproduced in facsimile, should not be excessive; and often a complicated expression appears as a component part of a given base. Instead, one may introduce, locally, a single nonconflicting letter to stand for such a complicated component. An explanatory definition should then appear in the immediate context.

Secondary Symbols. Subscripts and superscripts are widely used for a variety of conventional purposes. For example, a subscript may indicate the place of a term in a sequence or matrix; a designated state, point, part, time, or system of units; the constancy of one independent physical quantity among others on which a given quantity depends for its value; or a variable with respect to which the given quantity is a derivative. Likewise, for example, a superscript may indicate the exponent for a power, a distinguishing label, a unit, or a tensor index. The intended sense must be clear in each case. Several subscripts or superscripts, sometimes separated by commas, may be attached to a single letter. A symbol with a superscript such as prime (') or second (") or a tensor index should be enclosed in parentheses, braces, or brackets before an exponent is attached. So far as logical clarity permits, one should avoid attaching subscripts and superscripts to subscripts and superscripts. Abbreviations, themselves standardized, may appear among subscripts. A conventional sign or abbreviation indicating the adopted unit may be attached to a letter symbol or corresponding numeral. Reference marks, such as numbers in distinctive type, may be attached to words and abbreviations, but not to letter symbols.

Multiple Subscripts—Position Order. The wide variety and complexity of subject matter covered in the petroleum literature make it impossible to avoid use of multiple subscripts with many symbols. To make such usage less confusing, the following guides were used for the order of appearance of the individual letters in multiple subscripts in the symbols list. Use of the same rules is recommended when it becomes necessary to establish a multiple-subscript notation that has not been included in this list.

- 1. When the subscript r for "relative" is used, it should appear first in subscript order. Examples: k_{ro} and k_{rg} .
- 2. When the subscript *i* for "injection," "injected," or "irreducible" is used, it should appear first in subscript order (but after *r* for "relative"). Examples: B_{ig} , formation volume factor of injected gas, and c_{ig} , compressibility of injected gas.
- 3. Except for Cases 1 and 2 above (and symbols k_h and L_v), phase, composition, and system subscripts should generally appear first in subscript order. Examples: B_{gi} , initial or original gas FVF; B_{oi} initial or original oil FVF; $C_{O_2i^p}$ initial or original oxygen concentration; B_{ri} initial or original total system formation volume factor; ρ_{sE} , density of solid particles making up experimental pack; and F_{aF} , G_{Lp} , G_{wgp} , and G_{Fi} .
- 4. Abbreviation subscripts (such as "ext," "lim," "max," "min"), when applied to a symbol already subscripted, should appear last in subscript order and require that the basic symbol and its initial subscript(s) be first enclosed in parentheses. Examples: $(i_{a1})_{max}$ and $(S_{hr})_{min}$.
- 5. Except for Case 4, numerical subscripts should appear last in subscript order. Examples: q_{oD3} , dimensionless oil-production rate during Time Period 3; p_{R2} , reservoir pressure at Time 2; and $(i_{a1})_{max}$, maximum air-injection rate during Time Period 1.
- 6. Except for Cases 4 and 5, subscript *D* for "dimensionless" usually should appear last in subscript order. Examples: p_{tD} , q_{oD} , and $(q_{oD3})_{max}$.
- 7. Except for Cases 4 through 6, the following subscripts usually should appear last in subscript order; regions such as bank, burned, depleted, front, swept, and unburned (*b*, *b*, *d*, *f*, *s*, and *u*); separation, differential, and flash (*sp*, *d*, and *f*); and individual component identification (*I* or other). Examples: E_{bD} , R_{sf} , and n_{pj} .

Typography. When appearing as lightfaced letters of the English alphabet, letter symbols for physical quantities and other subscripts and superscripts, whether upper case, lower case, or in small capitals, are

printed in italic (slanted) type. Arabic numerals and letters of other alphabets used in mathematic expressions are normally printed in vertical type. When a special alphabet is required, boldface type is preferred over German, Gothic, or script type. It is important to select a typeface that has italic forms and clearly distinguished upper case, lower case, and small capitals. Typefaces with serifs are recommended.

Remarks. Quantity symbols may be used in mathematical expressions in any way consistent with good mathematical usage. The product of two quantities is indicated by writing *ab*. The quotient may be indicated by writing

$$\frac{a}{b}$$
, a/b , or ab^{-1} .

If more than one solidus (/) is used in any algebraic term, parentheses must be inserted to remove any ambiguity. Thus, one may write (a/b)/c, or a/bc, but not a/b/c.

Special Notes.

- 1. When the mobilities involved are on opposite sides of an interface, the mobility ratio will be defined as the ratio of the displacing phase mobility to the displaced phase mobility, or the ratio of the upstream mobility to the downstream mobility.
- 2. Abbreviated chemical formulas are used as subscripts for paraffin hydrocarbons: C_1 for methane, C_2 for ethane, C_3 for propane... C_n for C_nH_{2n+2} .
- 3. Complete chemical formulas are used as subscripts for materials: CO₂ for carbon dioxide, CO for carbon monoxide, O₂ for oxygen, N₂ for nitrogen, etc.
- 4. The letter *R* is retained for electrical resistivity in well logging usage. The symbol ρ is to be used in all other cases and is that preferred by ASA.
- 5. The letter C is retained for electrical conductivity in well logging usage. The symbol σ is to be used in all other cases and is that preferred by ASA.
- 6. Dimensions: L=length, m=mass, q=electrical charge, t=time, T=temperature, M=money, and n=amount of substance.
- 7. Dimensionless numbers are criteria for geometric, kinematic, and dynamic similarity between two systems. They are derived by one of three procedures used in methods of similarity: integral, differential, or dimensional. Examples of dimensionless numbers are Reynolds number, N_{Re}, and Prandtl number, N_{Pr}. For a discussion of methods of similarity and dimensionless numbers, see "Methods of Similarity," by R.E. Schilson, JPT (August 1964) 877–879.
- 8. The quantity x can be modified to indicate an average or mean value by an overbar, \overline{x} .

Distinctions Between and Descriptions of Abbreviations, Dimensions, Letter Symbols, Reserve Symbols, Unit Abbreviations, and Units

Confusion often arises as to the proper distinctions between abbreviations, dimensions, letter symbols, reserve symbols, unit abbreviations, and units used in science and engineering. SPE has adhered to the following descriptions.

Abbreviations. For use in textual matter, tables, figures, and oral discussions. An abbreviation is a letter or group of letters that may be used in place of the full name of a quantity, unit, or other entity. *Abbreviations are not acceptable in mathematical equations*.

Dimensions. Dimensions identify the physical nature or the general components of a specific physical quantity. SPE uses seven basic dimensions: mass, length, time, temperature, electrical charge, money, and amount (m, L, t, T, q, M, and n).*

Letter Symbols. For use in mathematical equations. A letter symbol is a *single* letter, modified when appropriate by one or more subscripts, used to represent a specific physical or mathematical quantity in a mathematical equation. A single letter may be used to represent a group of quantities, properly defined. The

same letter symbol should be used consistently for the same generic quantity, with special values being indicated by subscripts or superscripts.

Reserve Symbols. A reserve symbol is a single letter, modified when appropriate by one or more subscripts or superscripts, that can be used as an alternative when two quantities (occurring in some specialized works) have the same standard letter symbol. These conflicts may result from use of standard SPE symbols or subscript designations that are the same for two different quantities, or use of SPE symbols that conflict with firmly established, commonly used notation and signs from the fields of mathematics, physics, and chemistry.

To avoid conflicting designations in these cases, use of reserve symbols, reserve subscripts, and reservesymbol/reserve-subscript combinations is permitted, *but only in cases of symbols conflict*. Author preference for the reserve symbols and subscripts does not justify their use.

In making the choice as to which of two quantities should be given a reserve designation, one should attempt to retain the standard SPE symbol for the quantity appearing more frequently in the paper; otherwise, the standard SPE symbol should be retained for the more basic item (temperature, pressure, porosity, permeability, etc.).

Once a reserve designation for a quantity is used, it must be used consistently throughout a paper. Use of an unsubscripted reserve symbol for a quantity requires use of the same reserve symbol designation when subscripting is required. Reversion to the standard SPE symbol or subscript is not permitted with a paper. For larger works, such as books, consistency within a chapter or section must be maintained.

The symbol nomenclature, which is a required part of each work, must contain each reserve notation used, together with its definition.

Unit Abbreviation. A unit abbreviation is a letter or group of letters (for example, cm for centimeter), or in a few cases a special sign, that may be used in place of the name of a unit. The Intl. Organization for Standardization (ISO) and many other national and international bodies concerned with standardization emphasize the special character of these designations and rigidly prescribe the manner in which the unit abbreviations shall be developed and treated.

Units. Units express the system of measurement used to quantify a specific physical quantity. In SPE usage, units have "abbreviations" but do not have "letter symbols." See the *SI Metric System of Units and SPE Metric Standard*.

*Electrical charge is current times time. ISO uses Mass (m), Length (L), Time (T), Temperature (θ), Electrical current (T), Amount of substance (n), and Luminous Intensity (J).

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
a		activity	
а	F_{a}	air requirement	various
а	-	decline factor nominal	
а	L_{a} , L_{1}	distance between like wells (injection or production) in a row	L
A		amplitude	various
Α		atomic weight	m
A	F	Helmboltz function (work function)	mL^2/t^2
b	Y	intercept	various
b	f,F	reciprocal formation volume factor, volume at standard conditions divided by volume at reservoir conditions (shrinkage factor)	
b	W	width, breadth, or thickness (primarily in fracturing)	L
В	С	correction term or correction factor (either additive or multiplicative)	
В	F	formation volume factor, volume at reservoir conditions divided by volume at standard conditions	
С	<i>k,</i> к	compressibility	Lt ² /m
С		capacitance	$q^2 t^2 / mL^2$
С		capital costs or investments	M
С		coefficient of gas-well backpressure curve	$L^{3-2n}t^{4n}/m^{2n}$
C	n_C	components, number of	
C	c,n	concentration	various
C	σ	conductivity (electrical logging)	tq^2/mL^3
С	c,n	salinity	various
С	С	specific heat capacity (always with phase or system subscripts)	L^2/t^2T
C		waterdrive constant	$L^4 t^2/m$
C_{fD}		fracture conductivity, dimensionless	
$egin{array}{c} C_L \ d \end{array}$	c_L, n_L	condensate or natural gas liquids content decline factor, effective	various
d	D	diameter	L
d	L_d, L_2	distance between adjacent rows of injection and production wells	L
D		deliverability (gas well)	L^{3}/t
D	у,Н	depth	1
D	μ,δ	diffusion coefficient	L^2/t
е	i	influx (encroachment) rate	L^{3}/t
e_{O_2}	E_{O_2}	oxygen utilization	
e^{z}	exp z	exponential function	
Ε	ŋ,e	efficiency	

Basic Symbols in Alphabetical Order

	Reserve		
Letter Symbol	SPE Letter Symbol	Quantity	Dimensions
English	Symbol	Quantity	Dimensions
English	V	electromotive force	mL^2/t^2q
Ē	, U	energy	mL^2/t^2
\overline{E}	Ŷ	modulus of elasticity (Young's modulus)	M/Lt^2
E_A	η_A, e_A	areal efficiency (used in describing results of model studies only): area swept in a model divided by total model reservoir area (see E_p)	
E_c	Φ_c	electrochemical component of the SP	mL^2/t^2q
E_k	Φ_k	electrokinetic component of the SP	mL^2/t^2q
E_n		Euler number	
E_{SP}	$\Phi_{ m SP}$	SP (measured SP) (self potential)	mL^2/t^2q
-Ei(-x)		exponential integral, $\int_{x}^{\infty} \frac{e^{-t}}{t}$, dt, x positive	
Ei(x)		exponential integral, modified	
		$\lim_{\varepsilon \to 0+} \left(\int_{-x}^{-\varepsilon} \frac{e^{-t}}{t} dt + \int_{-x}^{\infty} \frac{e^{-t}}{t} dt \right) , x \text{ positive}$	
f	F	fraction (such as the fraction of a flow stream consisting of a particular phase)	
ſ	v	frequency	1/t
\hat{f}		friction factor	
$egin{array}{c} f \ f \ f \ f \ f \ f \ f \ f \ f \ f $		fugacity	m/Lt^2
f_{s}	<i>Q</i> , <i>x</i>	quality (usually of steam)	
	()	degrees of freedom	
F	A,R,r	factor in general, including ratios (always with identifying subscripts)	various
$F \\ F_R$	f	fluid (generalized) formation resistivity factor—equals R_0/R_w	various
		(a numerical subscript to F indicates the value R_w)	
F_{WV}	Y	specific weight	mL^2/t^2
g	Y	gradient	various
g		gravity, acceleration of	L/t^2
g_c		conversion factor in Newton's second law of motion	
G	g	gas in place in reservoir, total initial	L^3
G	g	gas (any gas, including air), always with identifying subscripts	various
G	f_G	geometrical factor (multiplier) (electrical logging)	
G	E_s	shear modulus	m/Lt ²
G_L	g_L	condensate liquids in place in reservoir, initial	L^3
h	i	enthalpy, specific	L^2/t^2
h	h_{h,h_T}	heat transfer coefficient, convective	m/t ³ T
h	d,e	height (other than elevation)	L
h		hyperbolic decline constant (from equation) $q = q_i / \left(1 + \frac{a_i t}{t}\right)^h$	

$$q = q_i / \left(1 + \frac{a_i t}{h}\right)^2$$

	Reserve		
Letter Symbol	SPE Letter Symbol	Quantity	Dimensions
English	~		
h	d,e	thickness (general and individual bed)	L
H	Ι	enthalpy (always with phase or system	mL^2/t^2
;		subscripts)	L^{3}/t
i i		injection rate interest rate	1/t
i_R		rate of return (earning power)	1/ t
I^{R}		income (net revenue minus expenses)	
Ι	i (script <i>i</i>), <i>i</i>	current, electric	q/t
Ι	I _T ,Iθ	heat transfer coefficient, radiation	m/t ³ T
Ι	i	index (use subscripts as needed)	
Ι	i	injectivity index	L ⁴ t/m
$\mathcal{J}(z)(\text{script } I)$		imaginary part of complex number z	
I_R	i_R	resistivity index (hydrocarbon)—equals R_t/R_0	2
j	i_R	reciprocal permeability	$1/L^2$
J	j	productivity index	$L^4 t/m$
k	ĸ	magnetic susceptibility	mL/q^2 L^2
k k	K	permeability absolute (fluid flow) reaction rate constant	L- L/t
$k k_h$	r,j λ	thermal conductivity (always with additional	$mL/t^{3}T$
κ_h	Λ	phase or system subscripts)	IIIL/ t I
Κ	K_b	bulk modulus	m/Lt^2
K		coefficient in the equation of the electrochemical component of the SP (spontaneous electromotive force)	$mL_{/t}^{2}q$
Κ	M	coefficient or multiplier	various
K	d	dispersion coefficient	L^2/t
K	k, F_{eq}	equilibrium ratio (y/x)	
$K_{ m ani}$	$M_{ m ani}$	anisotropy coefficient electrochemical coefficient	mL^2/t^2q
$egin{array}{c} K_c \ K_R \end{array}$	M_c, K_{ec} M_R, a, C		mL /t q
R_R	<i>MR</i> , <i>u</i> , <i>C</i>	formation resistivity factor coefficient ($F_R \phi^m$) natural logarithm, base <i>e</i>	
log		common logarithm, base 10	
\log_a		logarithm base <i>a</i>	
L	n_L	moles of liquid phase	
L_{f}	x_f	fracture half-length (specify "in the direction	L
Ŧ		of" when using x_f)	
L_s	$s_s, \ell_s \text{ (script } l)$	spacing (electrical logging)	L
L_{ν}	$\lambda_{ u}$	latent heat of vaporization	L
$\mathcal{L}(y)$ (script <i>L</i>)		Laplace transform of y, $\int_0^\infty y(t)e^{-st}dt$	
т	F_F	fuel consumption	various
т		mass	m
т		porosity exponent (cementation) (in an empirical relation between F_R and ϕ)	
m	F_{Fo} , F_{go}	ratio of initial reservoir free-gas volume to initial reservoir oil volume	
т	A	slope	various
M	Ι	magnetization	m/qt

att an Carrie 1 - 1	SPE Letter	Oursetite	D:
etter Symbol	Symbol	Quantity	Dimensions
English	_	· · · · · · · · · · · · · · · · · · ·	
M	F_{λ}	mobility ratio, general ($\lambda_{displacing}/\lambda_{displaced}$)	
M		molecular weight	m
M	$m_{ heta_D}$	slope, interval transit time vs. density (absolute value)	tL ² /m
M		volumetric heat capacity	m/Lt ² T
п	Ν	density (indicating "number per unit volume")	1/L ³
n		exponent of backpressure curve, gas well	
n	μ	index of refraction	
п	N	number (of variables, components, steps, increments, etc.)	
n	n	number (quantity)	
п		saturation exponent	
n		number of compounding periods	1/t
n_t	N_t	moles, number of, total	
N	n,C	count rate (general)	1/t
N		neutron [usually with identifying subscript(s)]	various
Ν		number, dimensionless, in general (always with identifying subscripts)	
N	n	oil (always with identifying subscripts)	various
Ν	$m_{\phi ND}$	slope, neutron porosity vs. density (absolute value)	L ³ /m
N_{GR}	N_{γ}, C_G	gamma ray count rate	1/t
N_R	N_F	fuel deposition rate	m/L ³ t
Ô	•	operating expense	various
р	Р	pressure	m/Lt^2
p		price	М
\overline{P}		phases, number of	
P		profit total	М
P_{c}	P_c , p_c	capillary pressure	M/Lt^2
	Q	production rate or flow rate	L^{3}/t
$\stackrel{q}{\substack{\mathcal{Q}\\\mathcal{Q}}}$	\overline{q}	charge (current times time)	q
\tilde{Q}	q, Φ	heat flow rate	mL^2/t^3
Q_i	q_i	pore volumes of injected fluid, cumulative dimensionless	
Q_{LtD}	$Q_{\ell t D}$ (script <i>l</i>)	fluid influx function, linear aquifer, dimensionless	
\mathcal{Q}_p	$Q_{\ell t D}$ (script <i>l</i>)	fluids, cumulative produced (where N_p and W_p are not applicable)	
Q_{tD}		fluid influx function, dimensionless, at dimensionless time t_D	
Q_V	Z_V	cation exchange capacity per unit pore volume	
r	R	radius	L
r	R	resistance	mL^2/tq^2
R	p,r	electrical resistivity (electrical logging)	ml^3tq^2
R	Γ'	gas constant, universal (per mole)	mL^2/t^2T
R	F_{g}, F_{go}	gas/oil ratio, producing	
R	N	molecular refraction	L^3

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
$\mathscr{R}(z)$ (script R)		real part of complex number z	
S	L	displacement	L
S	σ	entropy, specific	L^2/t^2T
S	G	Laplace transform variable	·
S	<i>S</i> , σ	skin effect	various
S		standard deviation of a random variable, estimated	
s^2		variance of a random variable, estimated	mL^2/t^2T
S	σ_t	entropy, total	mL /t I
S	ho,s	saturation	
t	τ	time	t
$t_{\rm ma}({\rm script}\ t)$	$\Delta t_{ m ma}$	matrix interval transit time	t/L
$t_{\frac{1}{2}}$	0	half-life	t
T	Θ	period	t T
T	θ	temperature	T
T	T	transmissivity, transmissibility flux	various various
u	ψ		L/t
u	ψ	flux or flow rate, per unit area (volumetric velocity)	
U	$U_{T}, U_{ heta}$	heat transfer coefficient, overall	m/t ³ T
ν	V,u	acoustic velocity	L/t
v	V_s	specific volume	L^{3}/m
V V	V, u R, V_t, R_t	velocity gross revenue ("value"), total	L/t M
V V	n_{v}	moles of vapor phase	11/1
V	U	potential difference (electric)	mL^2/q^2
V	v	volume	
V	f_{V},F_{V}	volume fraction or ratio (as needed, use same subscripted symbols as for "volumes"; note that bulk volume fraction is unity and pore volume fractions are ϕ)	various
W	Z	Arrhenius reaction-rate velocity constant	L^3/m
w	m	mass flow rate	m/t
W	W	water (always with identifying subscripts)	various
W	w	water in place in reservoir, initial	L^3
W	w,G	weight (gravitational)	mL/t^2 mL^2/t^2
W	W	work mole fraction of a component in liquid phase	IIIL /t
$\frac{x}{\vec{x}}$		vector of x	
$\frac{x}{\vec{x}}$		tensor of x	
$\begin{array}{c} x_D \\ X \end{array}$		dimensionless quantity proportional to <i>x</i> reactance	mL^2/tq^2
л У	f	holdup (fraction of the pipe volume filled by a given fluid: y_o is oil holdup; y_w is water holdup; sum of all holdups at a given level is one)	nii. / q
У		mole fraction of a component in vapor phase	

	Reserve		
Letter Symbol	SPE Letter Symbol	Quantity	Dimensions
English			
Z	Ζ	gas compressibility factor (deviation factor) (z=pV/nRT)	
Z		mole fraction of a component in mixture	
Z		valence	
Ζ		atomic number	
Ζ	D,h	elevation (height or fluid head) referred to datum	L
Ζ		impedance	various
Greek			
α	β, γ	angle	
α	mα	attenuation coefficient	1/L
α	a, η_h	heat or thermal diffusivity	L^2/t
α	α, η_n	reduction ratio or reduction term	
α	a, η_h	thermal or heat diffusivity	L^2/t
β	,	bearing, relative	270
β β	γ b	thermal cubic expansion coefficient	1/T
γ	D	Euler's constant=0.5772	1/ 1
γ		gamma ray [usually with identifying subscripts(s)]	various
γ	s, F_s	specific gravity (relative density)	
γ	k	specific heat ratio	
γ	Es	strain, shear	
ý	ė	shear rate	1/t
δ	Δ	decrement	various
δ		deviation, hole (drift angle)	vullous
$\stackrel{\circ}{\delta}$	F_d	displacement ratio	
δ	r_s	skin depth (logging)	L
Δ	3	difference or difference operator, finite $(\Delta x = x_2 - x_1 \text{ or } x_1 - x_2)$	
Δr	ΔR	radial distance (increment along radius)	L
3		dielectric constant	$q^2 t^2 / mL^3$
Е	e, \mathcal{E}_n	strain, normal and general	1
η	-) - 11	hydraulic diffusivity $(k/\phi c\mu \text{ or } \mathcal{N}\phi c)$	L^2/t
heta	β,γ	angle	
heta	$ heta_{\!\scriptscriptstyle V}$	strain, volume	
heta	$lpha_d$	angle of dip	
θ_{c}	Γ_{c}, γ_{c}	contact angle	
λ	C	decay constant $(1/\tau_d)$	1/t
λ	C	mobility (k/μ)	$L^{3}t/m$
λ		wave length $(1/\sigma)$	L
μ	ν, σ	Poisson's ratio	L
μ	<i>и</i> , 0 <i>т</i>	azimuth of reference on sonde	
μ^{μ}	m	magnetic permeability	mL/q^2
v^{μ}	N	kinematic viscosity	$\frac{L^2}{t}$
ρ	D	density	m/L^3
ρ	R	electrical resistivity (other than logging)	mL^3/tq^2
σ	Y	electrical conductivity (other than logging)	various

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
Greek			
σ		microscopic cross section	L^2
σ		standard deviation of a random variable	
σ	S	stress, normal and general	M/Lt^2
σ	у, ү	surface tension, interfacial	m/t^2
σ	ĩ	wave number $(1/\lambda)$	1/L
σ^2		variance of a random variable	
Σ	S	cross section, macroscopic	1/L
τ	S_{s}	stress, shear	m/Lt^2
τ	$ au_c$	time constant	t
τ		tortuosity	
$\overline{ au}$	ī	lifetime, average (mean life)	t
$ au_d$	t_d	decay time (mean life) $(1/\lambda)$	t
ϕ	<i>f,</i> ε	porosity $(V_b - V_s)/V_b$	
Φ	β_d	dip, azimuth of	
Φ	f	potential or potential function	various
ψ	·	dispersion modulus (dispersion factor)	
Ψ		stream function	various
ω		angular frequency	1/t

Economics Symbols in Alphabetical Order

Letter Symbol	Quantity	Dimensions
English		
\overline{C}	capital (costs) or investments	М
D	depletion, depreciation, or amortization (all nonreal account entries)	
Ε	expense, total (except income taxes)	М
i	interest rate	1/t
Ι	income (net revenue minus expenses)	М
п	number of compounding periods	1/t
р	price	М
Р	profit	М
r	royalty	various
R	revenue	М
t	time	t
Т	tax on income	various
v	value (economic)	М
Subscripts		
ar	after royalty	
at	after taxes	
br	before royalty	
bt	before taxes	
f	future	
k	specific period	
р	present	
no	navout	

popayoutpvpresent value

 $\begin{array}{cc} pv & \text{pres} \\ R & \text{rate} \end{array}$

u unit

t total

Superscript

real*

*Whether real or nominal moneys are being discussed must be indicated either through the use of a prime (') to indicate real figures or by clarifying in the text of the publication whether real or nominal amounts are being used.

_

	Examples
C_k	capital investment in Period k
C_{pv}	investment at present value
$\hat{E_u}$	expenses per unit
i_R	rate of return (earning power)
I_{bt}	income before taxes
I_{pvk}	income at present value in Period k
p_{gk}	price of gas in Period k
p_k	price in Period k
P_{pvat}	profit at present value after tax
P_{vatk}	profit at present value after tax in Period k
r_R	royalty rate
t _{poat}	payout time, after tax
t_{pvpobt}	payout time before tax at present value
T_k	tax in Period k
T_R	tax rate
V_p	net present value (NPV)
V_{poat}^{r}	payout volume, after tax
1	

Examples

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
a		activity	
а	F_a	air requirement	various
а		decline factor, nominal	
а	L_a, L_1	distance between like wells (injection or projection) in a row	L
a_E	F_{aE}	air requirement, unit, in laboratory experimental run, volumes of air per unit mass of pack	L ³ /m
a_R	F_{aR}	air requirement, unit, in reservoir, volumes of air per unit bulk volume of reservoir rock	
Α		amplitude	various
Α	S	area	L^2
A		atomic weight	m
A	S	cross section (area)	L^2
A	F	helmholtz function (work function)	mL^2/t^2
A_c		amplitude, compressional wave	various
A_r		amplitude, relative	various
A_s		amplitude, shear wave	various
b	W	breadth, width, or (primarily in fracturing) thickness	various
b	Y	intercept	various
b	f,F	reciprocal formation volume factor, volume at standard conditions divided by volume at reservoir conditions (shrinkage factor)	
b	W	width, breadth, or (primarily in fracturing) thickness	L
b_g	f_{g}, F_{g}	reciprocal gas formation volume factor	
b_{gb}	f_{gb}, F_{gb}	reciprocal gas formation volume factor at bubblepoint conditions	
b_o	f_o, F_o	reciprocal oil formation volume factor (shrinkage factor)	
В	С	correction term or correction factor (either additive or multiplicative)	
В	F	formation volume factor, volume at reservoir conditions divided by volume at standard conditions	
B_g	F_{g}	formation volume factor, gas	
B_{gb}^{s}	F_{gb}^{s}	bubblepoint formation volume factor, gas	
B_{gb}^{so}	F_{gb}^{so}	formation volume factor at bubblepoint conditions, gas	
B_o	F_o	formation volume factor, oil	
B_{ob}	F_{ob}	bubblepoint formation volume factor, oil	

Symbols in Alphabetical Order

Dimensions: L=length, m=mass, q=electrical charge, t=time, T=temperature, M=money, and n=amount of substance.

	Reserve		
Letter Symbol	SPE Letter Symbol	Quantity	Dimensions
English	Symbol	Quantity	Differisions
B_{ob}	F_{ob}	formation volume factor at bubblepoint conditions, oil	
B_t	F_T	formation volume factor, total (two-phase)	
B_w	F_w	formation volume factor, water	
c	k,ĸ	compressibility	Lt^2/m
\mathcal{C}_{f}	k_{f},κ_{f}	compressibility, formation or rock	Lt^2/m
c_g	k_{g},κ_{g}	compressibility, gas	Lt^2/m
C_o	k_o, κ_o	compressibility, oil	Lt^2/m
c_{pr}	k_{pr} , κ_{pr}	compressibility, pseudoreduced	2
\mathcal{C}_{W}	k_w,κ_w	compressibility, water	Lt^2/m
С		capacitance	$q^2 t^2 / mL^2$
С	C_t	capital investments, summation of all	M
C		coefficient of gas-well backpressure curve	$\mathrm{L}^{3-2n}\mathrm{t}^{4n}\mathrm{m}^{2n}$
C	n_C	components, number of	
C	c,n	concentration	various
C	σ_{V}	conductivity (electrical logging)	tq ² /mL ³
С	K	conductivity, other than electrical (with subscripts)	various
C	c,n	salinity	various
С	С	specific heat (always with phase or system subscripts)	L^2/t^2T
C		waterdrive constant	$L^4 t^2/m$
C_a	σ_{lpha}	conductivity, apparent	tq^2/mL^3
C_{C_1}	c_{C_1}	concentration, methane (concentration of other paraffin hydrocarbons would be indicated similarly, C_{C_2} , C_{C_3} , etc.)	various
C_{fD}		conductivity, fraction, dimensionless	
$\overset{j-}{C_i}$		capital investment, initial	М
C_k		capital investment in period k	М
C_L	c_L, n_L	content, condensate or natural gas liquids	various
C_L		waterdrive constant, linear aquifer	$L^4 t^2/m$
C_m	$c_m n_m$	fuel concentration, unit (see symbol <i>m</i>)	various
C_{0_2}	<i>c</i> _{O2}	concentration, oxygen (concentration of other elements or compounds would be indicated similarly, C_{CO_2} , C_{N_2} , etc.)	
C_{pv}		investment at present value	М
C_{wg}^{r}	c_{wg}, n_{wg}	content, wet-gas	various
d	0 0	decline factor, effective	
d	D	diameter	L
d	L_d, L_2	distance between adjacent rows of injection and production wells	L
d_h	d_{H}, D_{h}	diameter, hole	L
d_i	$d_b D_i$	diameter, invaded zone (electrically equivalent)	L
\overline{d}_{P}	\overline{D}_p	diameter, mean particle	L
D	*	deliverability (gas well)	L^{3}/t
-			

SPE LetterLetter SymbolSymbolQuantityDimensionsDgammadepletion, depreciation, or amortization (all nonreal account entries)NariousD μ, δ diffusion coefficient L^{1}/t eiencroachment or influx rate, gas L^{1}/t eiencroachment or influx rate, gas L^{1}/t eiencroachment or influx rate, gas L^{1}/t eiencroachment or influx rate, oll L^{1}/t eiencroachment or influx rate, water L^{1}/t^{1} eiencroachment or influx rate, water L^{1}/t^{1} eiencroachment or influx rate, water L^{1}/t^{1} eieeter flucturemL^{1}/t^{2}qeieeter flucturemL^{1}/t^{2}qEieeter flucturemL^{1}/t^{2}qEieeter flucturemL^{1}/t^{2}qEieeter flucturemL^{1}/t^{2}qEieeter flucturemL^{1}/t^{2}qEieeter flucturemL^{1}/t^{2}qEiieeter flucturemL^{1}/t^{2}qEieeemL^{1}/t^{2}qEieemL^{1}/t^{2}qEiiemL^{1}/t^{2}qEiimL^{1}/t^{2}qEiimL^{1}/t^{2}qEiimL^{1}/t^{2}q<		Reserve		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Letter Symbol		Quantity	Dimensions
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	English			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_			various
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D	y,H	depth	L
eiencroachment or influx rate $L_{i}^{3}t$ e_{e}i_{a}encroachment or influx rate, gas $L_{i}^{3}t$ e_{o}i_{a}encroachment or influx rate, oil $L_{i}^{3}t$ e_{w}i_{w}encroachment or influx rate, oil $L_{i}^{3}t$ e_{w}i_{w}encroachment or influx rate, water $L_{i}^{3}t$ e W electronmic for W mL $2^{3}t^{2}t$ E W electronemical (used in describing results ofmL2^{3}t^{2}t^{2}tE W model studies only: area swept in a modelmL1t L_{i} $\eta_{e}e_{i}$ efficiency, displacement, from burned ormL2^{3}t^{2}t^{2}t^{2}t^{2}t^{2}t^{2}t^{2}t^{2	D	μ,δ		L^2/t
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	е	-	encroachment or influx rate	L^{3}/t
$\begin{array}{ccccc} e_{o} & i_{o} & \text{encroachment or influx rate, oil } & L^{3}t \\ e_{O_{2}} & E_{O_{2}} & \text{oxygen utilization} \\ e_{w} & i_{w} & \text{encroachment or influx rate, water } & L^{3}t \\ e^{\tau} & \exp z & \exp (116 \text{ exponential function}) \\ E & \eta,e & efficiency \\ E & V & \text{electromotive force } & mL^{2}/t^{2} \\ E & V & \text{energy } & mL^{2}/t^{2} \\ E & v & \exp (116 \text{ except income taxes}) & M \\ E & Y & modulus of elacticity (Young's modulus) & m/Lt \\ E_{A} & \eta_{A},e_{A} & efficiency, areal (used in describing results of model studies only); area swept in a model \\ divided by total model reservoir area (see E_{P}) \\ E_{c} & \Phi_{c} & \text{electrochemical component of the SP } mL^{2}/t^{2} \\ E_{D} & \eta_{D},e_{D} & \text{efficiency, displacement; volume of hydrocarbon in the same pores just prior to \\ E_{Db} & \eta_{Db},e_{D} & \text{efficiency, displacement, from unburked portion of in-situ combustion pattern \\ E_{Du} & \eta_{Du},e_{Du} & \text{efficiency, displacement, from burned portion of in-situ combustion pattern \\ E_{Du} & \eta_{Db},e_{Du} & \text{efficiency, displacement, from unburned portion of in-situ combustion pattern \\ E_{Du} & \eta_{Db},e_{Du} & \text{efficiency, displacement, from unburned portion of in-situ combustion pattern \\ E_{Du} & \eta_{Du},e_{Du} & \text{efficiency, displacement, from divided by the hydrocarbon pore space enclosed in all layers behind the injected fluid or heat front \\ E_{k} & \Phi_{k} & \text{electrokinetic component of the SP } mL^{2}/t^{2} \\ E_{\mu} & \text{Euler's number } \\ E_{\mu} & \text{gassen } \Phi_{SP} & \text{pseudo-SP } mL^{2}/t^{2} \\ E_{\mu} & \text{function energy } mL^{2}/t^{2} \\ E_{\mu} & \text{function energy } mL^{2}/t^{2} \\ E_{\mu} & function the reservoir recovery: volume of hydrocarbon pore space enclosed behind the injected fluid or heat front divided by the hydrocarbon pore space enclosed behind the injected fluid or heat front divided by the hydrocarbon pore space enclosed in all layers behind the injected fluid or heat front divided by the hydrocarbon pore space on the space of the reservoir recovery: volume of hydrocarbon sin net pa$	e_{σ}	i_{σ}	encroachment or influx rate, gas	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-	L^{3}/t
e_w l_w encroachment or influx rate, water $L^{3/t}$ e^w exp zexponential function E $\eta_r e$ efficiency E V electromotive force $mL^{2/t^2}q$ E U energy $modulus of lasticity (Young's modulus)mL'tEVmodulus of elasticity (Young's modulus)m/LtE_A\eta_{A,e_A}efficiency, areal (used in describing results ofmodel studies only): area swept in a modeldivided by total model reservoir area (see E_P)E_c\Phi_celectrochemical component of the SPmL^{2/t^2}qE_D\eta_{De}e_Defficiency, displacement; volume ofhydrocarbons (oil or gas) displaced fromindividual pores or small groups of poresdivided by the volume of hydrocarbon in thesame pores just prior toE_{Dw}\eta_{Dw}e_{Dw}efficiency, displacement, from unburnedportion of in-situ combustion patternE_I\eta_{Le_I}efficiency, displacement, from unburnedpore space invaded (affected, contacted) bythe injected fluid or heat fronthydrocarbon pore space enclosed in all layersbehind the injected fluid or heat fronthydrocarbon pore space enclosed fromareal efficiency, pattern sweep (developed fromareal efficiency, overall reservoir recovery; volumeof hydrocarbons in net pay thickness, porosity, andhydrocarbon sutation); hydrocarbon porespace of the reservoir recovery; volumeof hydrocarbons in place at start of project(E_R = E_R E_$				
e^{z} exp zexponential functionE η_{e} efficiencyEVelectromotive force $mL^{2}/t^{2}q$ EUenergy mL^{2}/t^{2} EUexpense, total (except income taxes)MEYmodulus of elasticity (Young's modulus) mLt E_A $\eta_{A}e_A$ efficiency, areal (used in describing results of model studies only): area swept in a model divided by total model reservoir area (see E_P) E_c Φ_c electrochemical component of the SP $mL^{2}/t^{2}q$ E_D $\eta_{De}e_D$ efficiency, displacement: volume of hydrocarbons (oil or gas) displaced from individual pores or small groups of pores divided by the volume of hydrocarbon in the same pores just prior to of in-situ combustion pattern E_{Du} $\eta_{De}e_{Du}$ E_{Du} $\eta_{De}e_D$ efficiency, displacement, from burned portion of in-situ combustion pattern $mL^{2}/t^{2}q$ E_{Du} $\eta_{De}e_Du$ efficiency, displacement, from unburned portion of in-situ combustion pattern $mL^{2}/t^{2}q$ E_{L} $\eta_{L}e_{L}$ efficiency, altern swep (developed in all layers behind the injected fluid or heat front divided by the hydrocarbon pore space invaded (affected, contacted) by the hydrocarbon pore space enclosed in all layers behind the injector or project $mL^{2}/t^{2}q$ E_{R} Φ_{R} electrokinetic component of the SP $mL^{2}/t^{2}q$ E_{R} Φ_{SP} pseudo-SP $mL^{2}/t^{2}q$ E_{R} Φ_{R} electrokinetic component of the SP $mL^{2}/t^{2}q$ E_{R} Φ_{R} efficiency, patter	-	-		L^3/t
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				_ / •
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-		
EUenergy mL^2/t^2 Eexpense, total (except income taxes)MEYmodulus of elasticity (Young's modulus) $m'Lt$ E_A $\eta_A.e_A$ efficiency, areal (used in describing results of model studies only): area swept in a model divided by total model reservoir area (see E_P)E_c Φ_c electrochemical component of the SP mL^2/t^2q E_p η_{D,e_D} efficiency, displacement: volume of hydrocarbons (oil or gas) displaced from individual pores or small groups of pores divided by the volume of hydrocarbon in the same pores just prior toE_{Db $\eta_{Dbe}e_{Db}$ efficiency, displacement, from burned portion of in-situ combustion patternE_{Du $\eta_{De}e_{Du}$ efficiency, invasion (vertical): hydrocarbon pore space invaded (affected, contacted) by the injection fluid or heat frontE_k Φ_k electrokinetic component of the SP mL^2/t^2q E_n g_{E_e} Φ_{SP} pseudo-SP mL^2/t^2q E_n g_{E_e} Φ_{SP} efficiency, antern sweep (developed from areal efficiency by roper weighting for variations in net pay thickness, porosity, and hydrocarbon sturation): hydrocarbon pore space of the reservoir or project mL^2/t^2q E_k $\eta_{R_e}R$ efficiency, pattern sweep (developed from areal efficiency by roper weighting for variations in net pay thickness, porosity, and hydrocarbon sturation): hydrocarbon pore space of the reservoir or projectmL^2/t^2qE_k $q_R_e R$ efficiency, overall reservoir recovery: volume of hydrocarbons recovered divided by volume of hydrocarbons recov		• •		mL^2/t^2a
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		C	6,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Y		
$E_{c} \qquad \Phi_{c} \qquad \text{electrochemical component of the SP} \qquad \text{mL}^{2}/t^{2}q$ $E_{D} \qquad \eta_{D,eD} \qquad \text{electrochemical component of the SP} \qquad \text{mL}^{2}/t^{2}q$ $E_{D} \qquad \eta_{D,eD} \qquad \text{electrochemical component of the SP} \qquad \text{mL}^{2}/t^{2}q$ $= \text{fliciency, displacement; volume of} \qquad \text{hydrocarbons (oil or gas) displaced from} \\ \text{individual pores or small groups of pores} \\ \text{divided by the volume of hydrocarbon in the} \\ \text{same pores just prior to} \qquad \text{efficiency, displacement, from burned portion} \\ \text{of in-situ combustion pattern} \qquad \text{of in-situ combustion pattern} \qquad \text{E}_{Du} \qquad \eta_{Du}, e_{Du} \qquad \text{efficiency, displacement, from unburned} \\ \text{portion of in-situ combustion pattern} \qquad \text{for space invaded (affected, contacted) by} \\ \text{the injection fluid or heat front divided by the} \\ \text{hydrocarbon pore space enclosed in all layers} \\ \text{behind the injected fluid or heat front} \\ \text{E}_{k} \qquad \Phi_{k} \qquad \text{electrokinetic component of the SP} \qquad \text{mL}^{2}/t^{2}q \\ \text{E}_{n} \qquad \text{Euler's number} \\ \text{E}_{\rho SP} \qquad \Phi_{SP} \qquad \text{pseudo-SP} \qquad \text{mL}^{2}/q^{2} \\ \text{E}_{p} \qquad \eta_{p,e_{P}} \qquad \text{efficiency, otherwave (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon startation); hydrocarbon pore space of the reservoir recovery: volume of hydrocarbon pore space of the reservoir recovery: volume of hydrocarbon pore space of the reservoir recovery: volume of hydrocarbon sin place at start of project (E_{R}=E_{P}E_{P}E_{D}=E_{P}E_{D}$	\overline{E}_A		efficiency, areal (used in describing results of	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F	ወ		mI ² /t ² a
$E_{Db} \qquad \eta_{Db} \cdot e_{Db} \qquad \text{efficiency, displaced from individual pores or small groups of pores divided by the volume of hydrocarbon in the same pores just prior to E_{Db} \qquad \eta_{Db} \cdot e_{Db} \qquad \text{efficiency, displacement, from burned portion of in-situ combustion pattern} \\ E_{Du} \qquad \eta_{Du} \cdot e_{Du} \qquad \text{efficiency, displacement, from unburned portion of in-situ combustion pattern} \\ E_{I} \qquad \eta_{h} e_{I} \qquad \text{efficiency, invasion (vertical): hydrocarbon pore space invaded (affected, contacted) by the injection fluid or heat front divided by the hydrocarbon pore space enclosed in all layers behind the injected fluid or heat front E_{k} \qquad \Phi_{k} \qquad \text{electrokinetic component of the SP} \qquad \text{mL}^{2}/t^{2} \\ E_{n} \qquad \text{Euler's number} \\ E_{pSP} \qquad \Phi_{SP} \qquad \text{pseudo-SP} \qquad \text{mL}^{2}/t^{2} \\ E_{p} \qquad \eta_{p}.e_{P} \qquad \text{efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon sturation): hydrocarbon pore space enclosed behind the injected fluid or heat front areal efficiency or project efficiency is proper weighting for variations in net pay thickness, porosity, and hydrocarbon sturation): hydrocarbon pore space of the reservoir or project efficiency, overall reservoir recovery: volume of hydrocarbons recovered divided by volume of hydrocarbons in place at start of project (E_{R} = E_{P}E_{I}E_{D} = E_{V}E_{D}$				IIIL /t q
$E_{Du} \qquad \eta_{Du}e_{Du} \qquad \text{efficiency, displacement, from unburned} \\ \text{portion of in-situ combustion pattern} \\ E_{I} \qquad \eta_{L}e_{I} \qquad \text{efficiency, invasion (vertical): hydrocarbon} \\ \text{pore space invaded (affected, contacted) by} \\ \text{the injection fluid or heat front divided by the} \\ \text{hydrocarbon pore space enclosed in all layers} \\ \text{behind the injected fluid or heat front} \\ E_{k} \qquad \Phi_{k} \qquad \text{electrokinetic component of the SP} \qquad \text{mL}^{2}/t^{2}q \\ E_{k} \qquad \text{kinetic energy} \qquad \text{mL}^{2}/t^{2} \\ E_{n} \qquad \text{Euler's number} \\ E_{p\text{SP}} \qquad \Phi_{\text{SP}} \qquad \text{pseudo-SP} \qquad \text{mL}^{2}/qt^{2} \\ E_{p} \qquad \eta_{P},e_{P} \qquad \text{efficiency, pattern sweep (developed from} \\ \text{areal efficiency by proper weighting for} \\ \text{variations in net pay thickness, porosity, and} \\ \text{hydrocarbon pore space or losed behind the injected fluid or heat front} \\ expected by the laydrocarbon pore space enclosed in all layers behind the injected fluid or heat front \\ \text{mL}^{2}/t^{2}q \\ \text{E}_{n} \qquad \text{Euler's number} \\ \text{mL}^{2}/qt^{2} \\ \text{e}_{p} \qquad \eta_{P},e_{P} \qquad \text{efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore space of the reservoir or project \\ \text{E}_{R} \qquad \eta_{R}.e_{R} \qquad \text{efficiency, overall reservoir recovery: volume of hydrocarbons in place at start of project } \\ (E_{R}=E_{P}E_{L}E_{D}=E_{L}E_{D}) \qquad \text{for a start of project} $		עישוי	hydrocarbons (oil or gas) displaced from individual pores or small groups of pores divided by the volume of hydrocarbon in the same pores just prior to	
$E_{I} \qquad portion of in-situ combustion pattern \\ E_{I} \qquad \eta_{I}.e_{I} \qquad efficiency, invasion (vertical): hydrocarbon pore space invaded (affected, contacted) by the injection fluid or heat front divided by the hydrocarbon pore space enclosed in all layers behind the injected fluid or heat front E_{k} \qquad \Phi_{k} \qquad electrokinetic component of the SP \qquad mL^{2}/t^{2}q \\ E_{k} \qquad kinetic energy \qquad mL^{2}/t^{2} \\ E_{n} \qquad Euler's number \\ E_{pSP} \qquad \Phi_{SP} \qquad pseudo-SP \qquad mL^{2}/qt^{2} \\ E_{p} \qquad \eta_{P}.e_{P} \qquad efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space of the reservoir or project \\ E_{R} \qquad \eta_{R}.e_{R} \qquad efficiency, overall reservoir recovery: volume of hydrocarbons in place at start of project (E_{R}=E_{P}E_{I}E_{D}=E_{V}E_{D})$	E_{Db}	η_{Db} , e_{Db}		
E_I $\eta_L e_I$ efficiency, invasion (vertical): hydrocarbon pore space invaded (affected, contacted) by the injection fluid or heat front divided by the hydrocarbon pore space enclosed in all layers behind the injected fluid or heat front E_k Φ_k electrokinetic component of the SP mL^2/t^2q E_k Φ_k electrokinetic nergy mL^2/t^2 E_n Euler's number mL^2/qt^2 E_p Φ_{SP} pseudo-SP mL^2/qt^2 E_p η_{P,e_P} efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore 	E_{Du}	η_{Du}, e_{Du}		
E_k Φ_k electrokinetic component of the SP mL^2/t^2q E_k kinetic energy mL^2/t^2 E_n Euler's number E_{pSP} Φ_{SP} pseudo-SP E_p η_{P}, e_P efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore space of the reservoir recovery: volume of hydrocarbons recovered divided by volume of hydrocarbons in place at start of project $(E_R = E_P E_I E_D = E_V E_D)$	E_I	η_{I}, e_{I}	pore space invaded (affected, contacted) by the injection fluid or heat front divided by the hydrocarbon pore space enclosed in all layers	
E_n Euler's number E_{pSP} Φ_{SP} pseudo-SPmL²/qt² E_p η_{P}, e_P efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore space of the reservoir or project E_R $\eta_R.e_R$ efficiency, overall reservoir recovery: volume 	E_k	Φ_k	electrokinetic component of the SP	mL^2/t^2q
E_n Euler's number E_{pSP} Φ_{SP} pseudo-SPmL²/qt² E_p η_{P}, e_P efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore space of the reservoir or project E_R $\eta_R.e_R$ efficiency, overall reservoir recovery: volume of hydrocarbons in place at start of project $(E_R=E_PE_IE_D=E_VE_D)$			kinetic energy	mL^2/t^2
E_p η_{P}, e_P efficiency, pattern sweep (developed from areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore space of the reservoir or project E_R η_{R}, e_R efficiency, overall reservoir recovery: volume of hydrocarbons in place at start of project $(E_R = E_P E_I E_D = E_V E_D)$			Euler's number	
E_R $\eta_{R}e_R$ areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore space of the reservoir or project efficiency, overall reservoir recovery: volume of hydrocarbons recovered divided by volume of hydrocarbons in place at start of project $(E_R = E_P E_I E_D = E_V E_D)$	E_{pSP}	$\Phi_{ m SP}$	pseudo-SP	mL^2/qt^2
E_R η_{R}, e_R efficiency, overall reservoir recovery: volume of hydrocarbons recovered divided by volume of hydrocarbons in place at start of project $(E_R = E_P E_I E_D = E_V E_D)$	E_p	η _Ρ , ε _Ρ	areal efficiency by proper weighting for variations in net pay thickness, porosity, and hydrocarbon saturation): hydrocarbon pore space enclosed behind the injected fluid or heat front divided by total hydrocarbon pore	
	E_R	η_{R}, e_{R}	efficiency, overall reservoir recovery: volume of hydrocarbons recovered divided by volume of hydrocarbons in place at start of project	
	E_{SP}	Φ_{SP}		mL^2/t^2q

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
$E_{\rm SSP}$	$\Phi_{ m SSP}$	SSP (static SP)	mL^2/t^2q
E_u		expense per unit	М
E_V	η_V, e_V	efficiency, volumetric; product of pattern	
		sweep and invasion efficiencies	
E_{Vb}	$\eta_{\it Vb}$, $e_{\it Vb}$	efficiency, volumetric, for burned portion	
Γ		only, in-situ combustion pattern	
-Ei(-x)		exponential integral, $\int_{x}^{\infty} \frac{e^{-t}}{t} dt$, x positive	
Ei(x)		$\lim_{\varepsilon \to 0+} \left(\int_{-x}^{-\varepsilon} \frac{e^{-t}}{t} dt + \int_{-x}^{\infty} \frac{e^{-t}}{t} dt \right), x \text{ positive}$	
f	F	fraction (such as the fraction of a flow stream	
f	v	consisting of a particular phase) frequency	1/t
$\begin{array}{c}f\\f\\f\\f_g\\f_g\\f_L\end{array}$	V	friction factor	1/1
J f		fugacity	m/Lt ²
f_{-}	F_{-}	fraction gas	
$\int_{a}^{f_{g}}$	$F_g \\ F_g$	mole fraction gas, $V/(L+V)$	
f_I	$F_{L}f_{\ell}$	fraction liquid	
JL	(script ℓ)	·····	
f_L	$F_{L}f_{\ell}$ (script ℓ)	mole fraction liquid, $L/(L+V)$	
f_{s}	Q, x	quality (usually of steam)	
$egin{array}{c} f_s \ f_V \end{array}$	f_{Vb}, V_{bf}	fraction of bulk (total) volume	
$f_{s\phi h}$	$\phi_{ m igfsh}$	fraction of intergranular space ("porosity") occupied by all shales	
$f_{\phi shd}$	ϕ im/shd	fraction of intermatrix space ("porosity") occupied by nonstructural dispersed shale	
$f_{\phi w}$	$\phi_{ ext{igfw}}$	fraction of intergranular space ("porosity") occupied by water	
F		degrees of freedom	
F	f	fluid (generalized)	various
F	Q	force, mechanical	mL/t^2
F		ratio or factor in general (always with identifying subscripts)	
F_{aF}		air/fuel ratio	various
F_B		factor, turbulence	
F_R		formation resistivity factor—equals R_0/R_w (a numerical subscript to <i>F</i> indicates the value R_w)	
F_s	F_d	damage ratio or condition ratio (conditions relative to formation conditions unaffected by well operations)	
F_{wF}		water/fuel ratio	various
F_{wo}		water/oil ratio, producing, instantaneous	
F_{wop}		water/oil ratio, cumulative	2.2
F_{WV}	γ	specific weight	mL^2/t^2
g		acceleration of gravity	L/t^2

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
g	γ	gradient	various
g_c		conversion factor in Newton's second law of motion	
g_G	g_{g}	gradient, geothermal	T/L
G	F	free energy (Gibbs function)	mL^2/t^2
G	g	gas (any gas, including air), always with identifying subscripts	various
G	g	gas in place in reservoir, total initial	L^3
G	f_G	geometric factor (multiplier) (electrical logging)	
G	E_s	shear modulus	m/Lt ²
G_{an}	$f_{G\mathrm{an}}$	factor, geometric (multiplier), annulus (electrical logging)	
G_{an}	$f_{G\mathrm{an}}$	geometric factor (multiplier), annulus (electrical logging)	
G_e	g_{e}	gas influx (encroachment), cumulative	L^3
G_{Fi}	g_{Fi}	free-gas volume, initial reservoir (=mNB _{oi})	L^3
G_{Fp}	$g_{\it Fp}$	free gas produced, cumulative	$egin{array}{c} L^3 \ L^3 \ L^3 \end{array}$
G_i	g_i	gas injected, cumulative	L^3
G_i	f_{Gi}	geometric factor (multiplier), invaded zone (electrical logging)	
G_L	g_L	condensate liquids in place in reservoir, initial	L^3
G_{Lp}	g_{Lp}	condensate liquids produced, cumulative	L^3_2
G_m	f_{Gm}	geometric factor (multiplier), mud (electrical logging)	\overline{L}^3
G_p	g_p	gas produced, cumulative	L^3_2
G_p	f_{Gp}	geometric factor (multiplier), pseudo (electrical logging)	L ³
G_{pa}	g_{pa}	gas recovery, ultimate	L^3_2
$egin{array}{c} G_{pE} \ G_t \end{array}$	g_{pE}	gas produced from experimental tube run	L^3
	f_{Gt}	geometric factor (multiplier), true (noninvaded zone) (electrical logging)	2
G_{wgp}	g_{wgp}	wet gas produced, cumulative	L^3
G_{xo}	f_{Gxo}	geometric factor (multiplier), flushed zone (electrical logging)	
h	d,e	bed thickness, individual	L
h	i	enthalpy, specific	L^2/t^2
h	h_{h,h_T}	heat-transfer coefficient, convective	$m/t^3/T$
h	d,e	height (other than elevation)	L
h		hyperbolic decline constant (from equation) $q=q_i / \left(1 + \frac{a_i t}{h}\right)^h$	
h	d,e	thickness (general and individual bed)	L
h_{mc}	d_{mc}, e_{mc}	thickness, mud cake	L
h_n	d_n, e_n	thickness, net pay	L
h_t	$d_{t}e_{t}$	thickness, gross pay (total)	L
Н	Ι	enthalpy (always with phase or system subscripts)	mL^2/t^2

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English H _s	I_s	enthalpy (net) of steam or enthalpy above reservoir temperature	mL^2/t^2
i		discount rate	L^{3}/t
i i		injection rate interest rate	1/t
		injection rate, air	L^3/t
i_a i_g		injection rate, gas	$L^{3/t}$
$i_g i_R$		rate of return (earning power)	
i_w		injection rate, water	L^{3}/t
I I	i (script i), i	current, electric	q/t
Ī	<i>i</i> (script <i>i</i>), <i>i</i>	electric current	q/t
Ī	I_{T}, I_{θ}	heat transfer coefficient, radiation	$m/t^{3}T$
Ι	17 0	income (net revenue minus expenses)	М
Ι	i	index (use subscripts as needed)	
Ι	i	injectivity index	L ⁴ t/m
$\mathcal{J}(z)$ (script I)		imaginary part of complex number z	
I_{bt}		income before taxes	М
I_f	i_f, I_F, i_F	fracture index	
I_{Ff}	i_{Ff}	free fluid index	
I_H	i_H	hydrogen index	
I_{pwk}		income at present value in period k	М
I_R	i_R	hydrocarbon resistivity index R_t/R_0	- 3 .
I_s	i_s	injectivity index, specific	L ³ t/m
$I_{\mathrm{sh}GR}$ I_{ϕ}	ί _{shGR} ί _φ	shaliness gamma ray index, $(\gamma_{log}-\gamma_{cn})/(\gamma_{sh}-\gamma_{cn})$ porosity index	
I_{ϕ_1}	i_{ϕ_1}	porosity index, primary	
I_{ϕ_2}	i ₄₂	porosity index, secondary	
J	ω	reciprocal permeability	$1/L^{2}$
J	j	productivity index	$L^4 t/m$
J_s	j _s	productivity index, specific	$L^{3}t/m$
ĸ	ĸ	magnetic susceptibility	mL/q^2
Κ	Κ	permeability, absolute (fluid flow)	L^{2}
Κ	r,j	reaction rate constant	L/t
k_g	K_g	effective permeability to gas	L^2
k_g/k_o	K_g/K_o	gas/oil permeability ratio	
k_h	λ	thermal conductivity (always with additional	
		phase or system subscripts)	- 2
k_o	K_o	effective permeability to oil	L^2
k_{rg}	K_{rg}	relative permeability to gas	
k_{ro}	K _{ro}	relative permeability to oil	
k_{rw}	$K_{rw} \ K_w$	relative permeability to water	L^2
$k_w \ k_w/k_o$	$K_w K_w / K_o$	effective permeability to water water/oil permeability ratio	L
$\frac{\kappa_w/\kappa_o}{K}$	K_w/K_o K_b	bulk modulus	m/Lt ²
K K	n _b	coefficient in the equation of the	mL^2/t^2q
**		electrochemical component of the SP	nne / t Y
		(spontaneous electromotive force)	
Κ	М	coefficient or multiplier	various

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			2.
K	d	dispersion coefficient	L^2/t
K	k, F_{eq}	equilibrium ratio (y/x)	
K	M	multiplier or coefficient	various
K _{ani}	$M_{ m ani}$	anisotropy coefficient	- 2,2
K_c	M_{c}, K_{ec}	electrochemical coefficient	mL^2/t^2q
K_R	M_{R}, a, C	formation resistivity factor coefficient $(F_{R\phi}^{m})$	
ln		natural logarithm, base e	
log		common logarithm, base 10	
\log_a		logarithm, base a	
L	s, ℓ (script l)	distance, length, or length of path	L
L	s, ℓ (script l)	distance, path length, or distance	L
L	n_L	liquid phase, moles of	
L	s, ℓ (script l)	path length, length, or distance	L
L_{f}	x_f	fracture half-length (specify "in the direction of" when using <i>x_f</i>)	L
L_s	s, ℓ (script l)	spacing (electrical logging)	L
L_{ν}	λ_{v}	heat of vaporization, latent	L^2/t^2
$\mathcal{L}(y)$ (script L)		transform, Laplace of y, $\int_{0}^{\infty} y(t)e^{-st}dt$	
т		cementation (porosity) exponent (in an empirical relation between F_R and ϕ)	
т	F_F	fuel consumption	various
m	-	mass	m
т	F_{Fo} , F_{go}	ratio of initial reservoir free-gas volume to initial reservoir oil volume	
m	A	slope	various
m_E	F_{FE}	fuel consumption in experimental tube run	m/L^3
m_{Eg}	F_{FEg}	fuel consumption in experimental tube run (mass of fuel per mole of produced gas)	m
k		amortization (annual write-off of unamortized investment at end of year <i>k</i>)	М
m_R	F_{FR}	fuel consumption in reservoir	m/L^3
M	Ι	magnetization	m/qt
M	F_{λ}	mobility ratio, general ($\lambda_{\text{displacing}}/\lambda_{\text{displaced}}$)	
M	F_λ	mobility ratio, sharp-front approximation (λ_D/λ_d)	
M		molecular weight	m
M	т	number of compounding periods (usually per year)	m
M	$m_{ heta D}$	slope, interval transit time vs. density (absolute value)	tL ² /m
M		volumetric heat capacity	m/Lt ² T
M_{f}		magnetization, fraction	
M_L		molecular weight of produced liquids, mole- weighted average	m

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English M _s	M_{Dd} , M_{su}	mobility ratio, diffuse-front approximation $[(\lambda_D + \lambda_d)_{swept}/(\lambda_d)_{unswept}]$; mobilities are evaluated at average saturation conditions behind and ahead of front	
M_t	$F_{\lambda t}$	mobility ratio, total, $[(\lambda_t)_{swept}/(\lambda_t)_{unswept}]$; "swept" and "unswept" refer to invaded and uninvaded regions behind and ahead of leading edge of displacement front	
п	Ν	density (indicating "number per unit volume")	$1/L^3$
n		exponent of backpressure curve, gas well	
n	μ	index of refraction	
п	Ν	number (of variables, or components, or steps, or increments, etc.)	
п	N	number (quantity)	
n		number of compounding periods	1/t
n		saturation exponent	
n_j	N_i	moles of component <i>j</i>	
n_N	u u	density (number) of neutrons	$1/L^3$
n_{pj}	N_{pj}	moles of component <i>j</i> produced, cumulative	
n_t	N_t	number of moles, total	
Ν	n,C	count rate (general)	1/t
N		neutron [usually with identifying subscript(s)]	various
N		number, dimensionless, in general (always with identifying subscripts)	
N	п	oil (always with identifying subscripts)	various
Ν	n	pump strokes, number of, cycles per unit of time	
Ν	$m_{ heta ND}$	slope, neutron porosity vs. density (absolute value)	L ³ /m
Ne		oil influx (encroachment), cumulative	L^3
N_{GR}	N_{γ}, C_G	gamma ray count rate	1/t
N_i	n_i	oil in place in reservoir, initial	L^3
N_N	N_n, C_N	neutron count rate	1/t
N_p	n_p	oil produced, cumulative	L^3
N_{pa}	n _{pa}	oil recovery, ultimate	L^3
$\dot{N_R}$	\dot{N}_F	fuel deposition rate	m/L ³ t
$N_{\rm Re}$		Reynolds number (dimensionless number)	
р	Р	pressure	m/Lt^2
р		price	Μ
p_a	P_a	pressure, atmospheric	m/Lt^2
p_b	p_s, P_s, P_b	pressure, bubblepoint (saturation)	m/Lt^2
$p_{ m bh}$	$P_{\rm bh}$	pressure, bottomhole	m/Lt^2
p_c	P_c	pressure, critical	m/Lt^2
p_{cf}	P_{cf}	pressure, casing flowing	m/Lt^2
p_{cs}	P_{cs}	pressure, casing static	m/Lt^2
p_d	P_d	pressure, dewpoint	m/Lt^2
p_D	P_D	pressure, dimensionless	-
p_e	P_{e}	pressure, external boundary	m/Lt^2

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
$p_{\rm ext}$	$P_{\rm ext}$	pressure, extrapolated	m/Lt ²
p_f	P_f	pressure, front or interface	m/Lt ²
p_{gk}		price of gas in period k	М
p_i	P_i	pressure, initial	m/Lt^2
p_{iwf}	P_{iwf}	pressure, bottomhole flowing, injection well	m/Lt ²
p_{iws}	P_{iws}	pressure, bottomhole static, injection well	m/Lt^2
p_k		price in period k	М
$p_{ m pc}$	$P_{\rm pc}$	pressure, pseudocritical	m/L^2
$p_{ m pc}$	$P_{\rm pc}$	pseudocritical pressure	m/Lt^2
p_{pr}	P_{pr}	pressure, pseudoreduced	
p_r	P_r	pressure, reduced	_
p_{sc}	P_{sc}	pressure, standard conditions	m/Lt^2
$p_{ m sp}$	${P}_{ m sp}$	pressure, separator	m/Lt ²
p_{tD}	P_{tD}	pressure function, dimensionless, at	
		dimensionless time t_D	-
p_{tf}	P_{tf}	pressure, tubing flowing	m/Lt ²
p_{ts}	P_{ts}	pressure, tubing static	m/Lt^2
p_w	P_w	pressure, bottomhole general	m/Lt^2
p_{wf}	P_{wf}	pressure, bottomhole flowing	m/Lt^2
p_{ws}	P_{ws}	pressure, bottomhole static	m/Lt^2
p_{ws}	P_{ws}	pressure, bottomhole, at any time after shut-in	m/Lt^2
_	\overline{P}	average pressure	m/Lt^2
$\frac{p}{p}$	$\frac{1}{P}$	pressure, average or mean	m/Lt ²
—	$\frac{P}{P_R}$	pressure, reservoir average	m/Lt ²
p_R P	1 K		
P P		phases, number of profit	М
P_c	D n	capillary pressure	m/Lt^2
	P_{C}, p_{C}		M
P_{pvat}		profit at present value after tax	M
P_{pvatk}	0	profit at present value after tax in period k production rate or flow rate	L^3/t
q	$\begin{array}{c} Q\\ Q_a \end{array}$	production rate of now rate production rate at economic abandonment	$L^{7}t$ L^{3}/t
q_a		volumetric flow rate downhole	L^{3}/t
$q_{ m dh}$	$q_{wf}, q_{\rm DH}, Q_{\rm dh}$	production rate, dimensionless	L/l
q_D	Q_D	production rate, gas	L^{3}/t
q_g	Q_g	production rate, gas dimensionless	L/t
q_{gD}	Q_{gD}	production rate at beginning of period	L ³ /t
q_i	Q_i	production rate, oil	L^{3}/t
q_o	Q_o	production rate, oil, dimensionless	L/l
q_{oD}	Q_{oD}		L^{3}/t
$q_{\overline{p}}$	$Q_{\overline{p}}$	production rate or flow rate at mean pressure	
q_s	Q_s	segregation rate (in gravity drainage)	L^{3}/t
q_{sc}	$q_{\sigma}Q_{sc}$	surface production rate	L^{3}/t
q_{sc}	$q_{\sigma}Q_{sc}$	volumetric flow rate, surface conditions	L^{3}/t
q_w	Q_w	production rate, water	L^{3}/t
$q_{\underline{w}D}$	Q_{wD}	production rate, water, dimensionless	- 3 /
\overline{q}	$\overline{\mathcal{Q}}$	production rate or flow rate, average	L^{3}/t
	\mathcal{Q}	charge	q
$\begin{array}{c} Q \\ Q \end{array}$	q,Φ	heat flow rate	$q mL^2/t^3$

Letter Symbol	Reserve SPE Letter Symbol	Quantity	Dimensions
English			
Q_i	q_i	pore volumes of injected fluid, cumulative, dimensionless	mL^2/t^3
Q_{LtD}	$Q_{\ell t D}$ (script <i>l</i>)	influx function, fluid, linear aquifer, dimensionless	
Q_p	$Q_{\ell t D}$ (script <i>l</i>)	fluids, cumulative produced (where N_p and W_p are not applicable)	
Q_p		produced fluids, cumulative (where N_p and W_p are not applicable)	L^3
Q_{tD}		fluid influx function, dimensionless, a dimensionless time t_D	
Q_V	Z_V	cation exchange capacity per unit pore volume	
r	R	radius	L
r	R	resistance	ML^2/tq^2
r	n	royalty	various
r_d	R_d	drainage radius	L
r_d r_D	R_d R_D	radius, dimensionless	Ľ
	R_{e}	external boundary radius	L
r _e		hydraulic radius	L
r _H	R_H	royalty rate	various
r_R	D		L
r _s	R_s	radius of well damage or stimulation (skin)	L
r_w	R_w	well radius	
$r_{_{WS}}$	R_{wa}	radius of wellbore, apparent or effective (includes effects of well damage or stimulation)	L
R	ρ,r	electrical resistivity (electrical logging)	mL^3/tq^2
R		gas constant, universal (per mole)	mL^2/t^2T
R	F_{g}, F_{go}	gas/oil ratio, producing	
R	N	molecular refraction	L^3
R		reaction rate	m/L^2
R		revenue	М
$\Re(z)(\operatorname{script} R)$		real part of complex number z	
R_a	ρ_a, r_a	apparent resistivity	mL^3/tq^2
R_F	F_{gF}, F_{goF}	free gas/oil ratio, producing (free-gas volume/oil volume)	-
R_i	$ ho_i$, r_i	invaded zone resistivity	mL^3/tq^2
R_m	$ ho_m, r_m$	mud resistivity	mL^3/tq^2
R_{mc}	$ ho_{mc}, r_{mc}$	mudcake resistivity	mL^3/tq^2
R_{mf}	$ ho_{\it mf}, r_{\it mf}$	mud-filtrate resistivity	mL^3/tq^2
R_p	F_{gp} , F_{gop}	cumulative gas/oil ratio	
$\dot{R_s}$	F_{gs}, F_{gos}	solution gas/oil ratio (gas solubility in oil)	
R_{sb}	F_{gsb}	solution gas/oil ratio at bubblepoint conditions	
R_{sh}	$ ho_{sh}, r_{sh}$	shale resistivity	mL^3/tq^2
R_{si}	F_{gsi}	solution gas/oil ratio, initial	-
R_{sw}	U	gas solubility in water	
R_t	ρ_t, r_t	true formation resistivity	mL^3/tq^2
R_w	ρ_{w}, r_{w}	water resistivity	mL^3/tq^2
		-	*

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			
R_{xo}	$ ho_{xo}$, r_{xo}	flushed-zone resistivity (that part of the invaded zone closest to the wall of the hole, where flushing has been maximum)	mL^3/tq^2
R_z	$ ho_z, r_z$	apparent resistivity of the conductive fluids in an invaded zone (caused by fingering)	mL^3/tq^2
R_0	$ ho_0, r_0$	formation resistivity when 100% saturated with water of resistivity R_w	mL^3/tq^2
S		Laplace transform variable	
S	L	displacement	L
S	Σ	entropy, specific	L^2/t^2T
S	<i>S</i> , σ	skin effect	various
S		standard deviation of a random variable, estimated	
s^2		variance of a random variable, estimated	
S	σ_t	entropy, total	mL^2/t^2T
S	ρ ,s	saturation	
S	s, σ	storage or storage capacity	various
S_{fD}	S_D	dimensionless fracture storage capacity	
\check{S}_{g}	$ ho_g, s_g$	gas saturation	
S_{ec}	ρ_{gc}, s_{gc}	gas saturation, critical	
$S_{gc} \\ S_{gr} \\ S_h$	ρ_{gr}, s_{gr}	gas saturation, residual	
$\tilde{S_h}$	ρ_h, s_h	saturation, hydrocarbon	
S_{hr}	ρ_{hr}, s_{hr}	residual hydrocarbon saturation	
S_{iw}	ρ_{iw} , S_{iw}	irreducible (interstitial or connate) water saturation	
S_L	$ ho_L, s_L$	liquid saturation, combined total	
S_o	ρ_o, s_o	oil saturation	
S_{og}	$ ho_{og}$, s_{og}	gas-cap interstitial-oil saturation	
Sor	ρ_{or}, s_{or}	residual oil saturation	
S_w	ρ_{w}, S_{w}	water saturation	
S_{wc}	ρ_{wc}, s_{wc}	critical water saturation	
S_{wg}	ρ_{wg}, S_{wg}	interstitial-water saturation in gas cap	
S_{wi}	ρ_{wi}, s_{wi}	initial water saturation	
S_{wo}	S_{wb}	interstitial-water saturation in oil band	
S_{wr}	ρ_{wr}, s_{wr}	residual water saturation	
Т	τ	time	t
ℓ (script <i>t</i>)	Δt	interval transit time	t/L
t_d	$ au_d$	time, delay	t
t_{dN}		decay time, neutron (neutron mean life)	t
t_D	$ au_D$	time, dimensionless	
t_{Dm}	$ au_{Dm}$	time, dimensionless at condition m	
\mathcal{L}_{ma} (script t)	Δt_{ma}	matrix interval transit time	t/L
t_N	$ au_N, t_n$	neutron lifetime	1/t
t_p	$ au_p$	time well was on production prior to shut-in, equivalent (pseudotime)	t
t _{poat}		payout time, after tax	t
t_{pypobt}		payout time, before tax at present value	t
t_s	$ au_s$	time for stabilization of a well	t

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English		• • • · · • • • • • · • · •	. / =
ζ_{sh} (script t)	Δt_{sh}	shale interval transit time	t/L
t_1	$ au_1$	relaxation time, proton thermal	t
$t_{1_{2}}$		half-life	t
t_2	$ au_2$	relaxation time, free-precession decay	t
T	Θ	period	t
T	0	tax on income	various
T T	$ heta _{T}$	temperature	T
	T	transmissivity, transmissibility	various
T_{bh}	θ_{BH}	bottomhole temperature	T T
T_c	θ_c	critical temperature formation temperature	T T
$T_f \\ T_k$	$ heta_{f}$	tax in period k	various
	A	pseudoreduced temperature	T
T_{pr} T_r	$egin{array}{c} heta_{pr} \ heta_{r} \end{array}$	reduced temperature	1
T_r T_R	$egin{array}{c} & & & & & & & & & & & & & & & & & & &$	reservoir temperature	Т
T_R T_R	O_R	tax rate	various
T_{R} T_{sc}	$ heta_{sc}$	temperature, standard conditions	T
u sc	Ψ	flux	various
u	Ψ	flux or flow rate, per unit area (volumetric velocity)	L/t
и	Ψ	superficial phase velocity (flux rate of a particular fluid phase flowing in pipe; use appropriate phase subscripts)	
U	$U_{T}, U_{ heta}$	heat transfer coefficient, overall	m/t ³ T
v	V,u	acoustic velocity	L/t
ν	v_s	specific volume	L^{3}/m
ν	-	value (economic)	М
ν	V,u	velocity	L/t
v_b	V_b, u_b	burning-zone advance rate (velocity of)	L/t
v_p		net present value (NPV)	М
V	n_v	moles of vapor phase	
V	U	potential difference (electric)	mL^2/qt^2 L ³
V	v	volume	
V	$f_{\nu}F_{\nu}$	volume fraction or ratio (as needed, use same subscripted symbols as for "volumes"; note that bulk volume fraction is unity and pore volume fractions are ϕ)	various
V_b	v_b	bulk volume	L^3
V_{bE}	v_{bE}	bulk volume of pack burned in experimental tube run	L^3
V_{bp}	v_{bp}	volume at bubblepoint pressure	L^3
V_e^{op}	V_{pe}, v_e	volume, effective pore	\tilde{L}^3
V _{gr}	v _{gr}	volume, grain (volume of all formation solids except shales)	L^3
V_{ig}	v_{ig}	volume, intergranular (volume between grains; consists of fluids and all shales) $(V_v - V_{gr})$	
V_{im}	v_{im}	volume, intermatrix (consists of fluids and dispersed shale) $(V_b - V_{ma})$	L ³

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English			2
V_M	v_m	molal volume (volume per mole)	L^3_2
V _{ma}	v_{ma}	matrix (framework) volume (volume of all formation solids except dispersed clay or shale)	L ³
V_{ma}	v_{ma}	volume, matrix (framework)(volume of all formation solids except dispersed shale)	L^3
V_p	v_p	pore volume $(V_b - V_s)$	L^3
V_{pD}	v_{pD}	pore volume, dimensionless	
V_{poat}	v_{pD}	payout volume, after tax	L^3
V_{Rb}	F^{-}	volume of reservoir rock burned	L^3
V_{Ru}		volume of reservoir rock unburned	L^3
V_s	v_s	volume, solids(s) (volume of all formation solids)	L ³
V_{sh}	\mathcal{V}_{sh}	volume, shale(s)(volume of all shales: structural and dispersed)	L^3
V_{shd}	v_{shd}	volume, shale, dispersed	L^3
V_{shs}	v_{shs}	volume, shale, structural	L^3
W	Z	Arrhenius reaction-rate velocity constant	L^3/m
W	m	mass flow rate	m/t
W	m	rate, mass flow	m/t
W	w	water (always with identifying subscripts)	various
W	w	water in place in reservoir, initial	L^3
W	w,G	weight (gravitational)	mL/t^2
W	W	work	mL^2/t^2
W _e	We	water influx (encroachment), cumulative	L^3
W_i	W_i	water injected, cumulative	\overline{L}^3
W_p	w_p	water produced, cumulative	L^3
$\frac{x}{x}$	тp	mole fraction of a component in liquid phase	Ľ
		vector of x	
\vec{x} \vec{x}		tensor of x	
$\frac{x}{\overline{x}}$			
		mean value of a random variable, x , estimated	N GT 2/4 2
X y y	f	reactance holdup (fraction of the pipe volume filled by a given fluid: y_o is oil holdup; y_w is water holdup; sum of all holdups at a given level is 1) mole fraction of a component in a vapor	ML ² /tq ²
Z	Ζ	phase gas compressibility factor (deviation factor)	
_ 		(z=pV/nRT) mole fraction of a component in mixture valence	
$Z_{\overline{p}}$	$Z_{\overline{p}}$	gas deviation factor (compressibility factor) at mean pressure	
Z		atomic number	_
Z	D,h	elevation referred to datum	L
Ζ	D,h	height, or fluid head or elevation referred to a datum	L
Ζ		impedance	various

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
English		· · · ·	/ T 2,
Z_a		impedance, acoustic	m/L ² t
Creak			
Greek a	β,γ	angle	
α	M_{α}	attenuation coefficient	1/L
α	a, η_h	heat or thermal diffusivity	L^2/t
α		reduction ratio or reduction term	
α	a,η_h	thermal or heat diffusivity	L^2/t
$\alpha_{SP_{sh}}$	•	reduction ratio, SP, caused by shaliness	
β	γ	bearing, relative	
β	b	thermal cubic expansion coefficient	1/T
y Y		gamma ray [usually with identifying	various
,		subscript(s)]	
γ	s, F_s	specific gravity (relative density)	
γ	k	specific heat ratio	
γ	\mathcal{E}_{s}	strain, shear	
Ŷ	ė	shear rate	1/t
γ_g	s_{g}, F_{gs}	specific gravity, oil	
γ_w	s_{w}, F_{ws}	specific gravity, water	
δ	Δ	decrement	various
δ		deviation, hole (drift angle)	
δ	F_d	displacement ratio	
δ		drift angle, hole (deviation)	
δ	r_s	skin depth (logging)	L
δ_{ob}	F_{dob}	displacement ratio, oil from burned volume,	
		volume per unit volume of burned reservoir rock	
δ_{ou}	F_{dou}	displacement ratio, oil from unburned	
		volume, volume per unit volume of unburned	
s	Г	reservoir rock	
δ_{wb}	F_{dwb}	displacement ratio, water from burned	
		volume, volume per unit volume of burned reservoir rock	
Δ		difference or difference operator, finite	
Δ		$(\Delta x = x_2 - x_1 \text{ or } x_1 - x_2)$	
ΔG_e	Δg_e	gas influx (encroachment) during an interval	L^3
ΔG_e ΔG_i	Δg_i	gas injected during an interval	L^3
ΔG_p	Δg_p	gas produced during an interval	L^3
ΔN_e	$\frac{\Delta s_{p}}{\Delta n_{e}}$	oil influx (encroachment) during an interval	L^3
ΔN_p	Δn_p	oil produced during an interval	\overline{L}^3
Δr^{P}	ΔR^{P}	radial distance (increment along radius)	L
Δt_{wf}	Δau_{wf}	drawdown time (time after well is opened to	t
··9	·· <i>y</i>	production) (pressure drawdown)	
$\Delta t_{\scriptscriptstyle WS}$	$\Delta au_{\scriptscriptstyle WS}$	buildup time; shut-in time (time afterwell is	t
		shut in) (pressure buildup, shut-in time)	2
ΔW_e	Δw_e	water influx (encroachment) during an	L^3
		interval	- ³
ΔW_i	Δw_i	water injected during an interval	L^3
ΔW_p	Δw_p	water produced during an interval	L^3

	Reserve		
Letter Symbol	SPE Letter Symbol	Quantity	Dimensions
Greek			2.2. 2
З		dielectric constant	q^2t^2/mL^3
З	e, ε_n	strain, normal and general	- 2 /
η		hydraulic diffusivity $(k/\phi c\mu \text{ or } \lambda/\phi c)$	L^2/t
θ	β,γ	angle	
θ	$ heta_{\scriptscriptstyle V}$	strain, volume	
Θ	α_d	angle of dip	
Θ_a	α_{da}	dip, apparent angle of	
Θ_c	Γ_c, γ_c	contact angle	1 //
λ	C	decay constant($1/\tau_d$)	$\frac{1/t}{L^3t/m}$
λ		mobility (k/μ)	
λ		wavelength($1/\sigma$)	L L ³ t/m
λ_g		mobility, gas	$L^{3}t/m$
λ_o		mobility, oil	$L^{3}t/m$
λ_t	Λ	mobility, total, of all fluids in a particular	L I/M
λ_w		region of the reservoir [e.g., $(\lambda_o + \lambda_g + \lambda_w)$] mobility, water	L ³ t/m
	М	azimuth of reference on sonde	
μ		magnetic permeability	mL/q^2
μ	т	mean value of a random variable	IIIL/q
μ	1) (7	Poisson's ratio	
μ	v,σ	viscosity, dynamic	m/Lt
μ	η	viscosity, dynamic viscosity, air	m/Lt
μ_a	η_a	chemical potential	111/ L/t
μ_c	n	viscosity, gas	m/Lt
$\mu_{g} \ \mu_{ga}$	$\eta_g \ \eta_{ga}$	viscosity, gas, at 1 atm	m/Lt
μ_o	η_o	viscosity, oil	m/Lt
	η_p^-	viscosity at mean pressure	m/Lt
μ_p^-		viscosity, water	m/Lt
μ_w _V	η_w N	kinematic viscosity	L^2/t
v v	N	viscosity, kinematic	$L^{2/t}$
ρ	D	density	m/L^3
ρ	R	resistivity, electrical (other than logging)	mL^3tq^2
ρ_a	D_a	density, apparent	m/L^3
ρ_b	D_b	density, bulk	m/L^3
$ ho_{f}$	D_f	density, fluid	m/L_2^3
ρ_F	D_F	density, fuel	m/L^3
ρ_g	D_g	density, gas	m/L^3
ρ_{ma}	D_{ma}^{s}	density, matrix (solids, grain)	m/L^3
ρ_o	D_o	density, oil	m/L^3
ρ_{sE}	D_{sE}	density of solid particles making up	m/L^3
,		experiment pack	
$ ho_t$	D_t	density, true	m/L^3
ρ_w	D_w	density, water	m/L^3
ρ_{xo}	D_{xo}	density, flushed zone	m/L^3
$\overline{\rho}_L$	\overline{D}_L	density of produced liquid, weight-weighted	m/L ³
-		average	
σ	γ	conductivity, electrical (other than logging)	various
σ		cross section, microscopic	1/L
σ	S	cross section of a nucleus, microscopic	L^2

	Reserve SPE Letter		
Letter Symbol	Symbol	Quantity	Dimensions
Greek			. 2
σ	у,ү	interfacial surface tension	m/t^2
σ		microscopic cross section	L^2
σ		standard deviation of a random variable	(T . ?
σ	S	stress, normal and general	m/Lt^2
σ	<i>У,ү</i>	surface tension, interfacial	m/t^2
$\sigma \sigma^2$	\tilde{v}	wave number $(1/\lambda)$	1/L
	S	variance of a random variable	1/L
$\Sigma \Sigma$	3	cross section, macroscopic	1/L
$\frac{\lambda}{\tau}$	c.	summation (operator) stress, shear	m/Lt ²
τ	S_{S}	time constant	t t
	τ_c	decay time (mean life) $(1/\lambda)$	t
$ au_d \ au_d$	t _d t _{dt}	mean life (decay time) $(1/\lambda)$	t
$ au_d$ $ au_e$	<i>v_{dt}</i>	tortuosity, electric	t
$ au_e^{ au_e}$		hydraulic tortuosity	
$ au_H$		tortuosity, hydraulic	
$\frac{\tau_n}{\tau}$	\overline{t}	lifetime, average (mean life)	t
ϕ	f,ε	porosity $(V_b - V_s)/V_b$	
ϕ_a	f_a, ε_a	porosity, apparent	
ϕ_e	f_e, ε_e	porosity, effective (V_{pe}/V_b)	
ϕ_E	f_{E}, ε_{E}	porosity of experimental pack	
ϕ_h	f_{h}, ε_{h}	porosity, hydrocarbon-filled, fraction or	
		percent of rock bulk volume occupied by hydrocarbons	
ϕ_{ig}	f_{ig} , $arepsilon_{ig}$	"porosity" (space), intergranular $(V_b - V_{gr})/V_b$	
ϕ_{im}	f_{im} , $arepsilon_{im}$	"porosity" (space), intermatrix $(V_b-V_{ma})/V_b$	
ϕ_{ne}	f_{ne} , ε_{ne}	porosity, noneffective $(V_{pne})/V_b$	
ϕ_R	f_R , ε_R	porosity of reservoir or formation	
ϕ_t	f_t, ε_t	porosity, total	
Φ	β_d	dip, azimuth of	
Φ	f	potential of potential function	various
$\psi \ \Psi$		dispersion modulus (dispersion factor) stream function	various
ω		angular frequency (acentric factor)	1/t
Math			
x		proportional to	
_		average or mean (overbar)	
<		smaller than	
< < > > > ~ ~		equal to or smaller than	
>		larger than	
\geq		equal to or larger than	
		asymptotically equal to	
\approx		approximately equal to or is approximated by	
<u></u>		(usually with functions)	
$\sum_{i=1}^{n}$		del (gradient operator)	
\vee ·		divergence operator	

Letter Symbol Math	Reserve SPE Letter Symbol	Quantity	Dimensions
∇^2 ∇x erf erfc lim b E_n Ei(x)	γ	Laplacian operator curl error function error function, complementary limit intercept Euler's number exponential integral, modified $\lim_{\varepsilon \to 0+} \left(\int_{-x}^{-\varepsilon} \frac{e^{-t}}{t} dt + \int_{\varepsilon}^{\infty} \frac{e^{-t}}{t} dt \right), x \text{ positive}$	various
-Ei(-x)		exponential integral, $\int_x^{\infty} \frac{e^{-t}}{t} dt$, x positive	
e^{z} F f $\mathcal{J}(z)$	exp z F	exponential function ratio fraction imaginary part of complex number z	
$\mathcal{L}(y)$ $\ln \log_{a} \log_{a} m$ N n $\mathcal{R}(z)$	A	Laplace transform of y , $\int_0^\infty y(t)e^{st}dt$ logarithm, natural, base e logarithm, common, base 10 logarithm, base a slope number, dimensionless number (of variables, or steps, or increments, etc.) real part of complex number z	various
s s s s s r x x x x x x x		Laplace transform variable standard deviation of a random variable, estimated variance of a random variable, estimated mean value of a random variable, <i>x</i> , estimated vector of <i>x</i> tensor of <i>x</i>	
$ \begin{array}{c} \alpha \\ \gamma \\ \Delta \\ \Delta \\ \mu \\ \sigma \\ \sigma^2 \\ \Phi \end{array} $	eta,γ	angle Euler's constant=0.5772 difference ($\Delta x = x_2 - x_1$ or $x_1 - x_2$) difference operator, finite mean value of a random variable standard deviation of a random variable variance of a random variable potential or potential function	various
Ψ		stream function	various
Letter SubscriptSubscriptSubscript Definition \mathcal{G} \mathcal{E} strain η diffusivity θ angle, angular, or angular coordinate λ M ρ density ϕ $f.\varepsilon$ $f.\phi$		Reserve SPE	
--	---------------------	----------------	--
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Letter Subscript		Subscript Definition
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Greek and Numerical		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Ε	strain
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	η		diffusivity
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	λ	M	
	ρ		density
v individual entries such as "amplitude log," "neutron log," etc.0 (zero) zr formation 100% saturated with water (used in R_0 only)1 p ,priprimary1,2,3, etc.location subscripts; usage is secondary to that for representing times or time periods1,2,3, etc.numerical subscripts (intended primarily to represent times or time periods; available secondarily as location subscripts or for other purposes)1,2,3, etc.times or time periods $\frac{V_2}{2}$ s, sec $\frac{V_2}{2}$ s, secsecondaryconditions for infinite dimensions $\frac{V_2}{2}$ a $\frac{a}{4}$ A	ϕ	f,ɛ	porosity
1 p, pri primary1,2,3, etc.location subscripts; usage is secondary to that for representing times or time periods1,2,3, etc.numerical subscripts (intended primarily to represent times or time periods; available secondarily as location subscripts or for other purposes)1,2,3, etc.times or time periods 	ϕ	f,ɛ	
1,2,3, etc.location subscripts; usage is secondary to that for representing times or time periods1,2,3, etc.numerical subscripts (intended primarily to represent times or time periods; available secondarily as location subscripts or for other purposes)1,2,3, etc.times or time periods half $\frac{1}{2}$ s,sec $\frac{1}{2}$ s,secsecondary ∞ conditions for infinite dimensionsEnglish a a A acoustic a a a A acoustic attered a Ap apparent (general) at mosphere, atmospheric air/fuel an ah AN anhydrite ani a ah $ahydrite$ anisotropic ah $ahydrite$ after royalty	0 (zero)	zr	formation 100% saturated with water (used in R_0 only)
times or time periods1,2,3, etc.numerical subscripts (intended primarily to represent times or time periods; available secondarily as location subscripts or for other purposes)1,2,3, etc.times or time periods $\frac{1}{2}$ s,sec $\frac{1}{2}$ s,secscondary ∞ conditions for infinite dimensionsEnglish aaAaA,aaA,aaacousticaalteredaAaAaAaAaatmosphere, atmosphericaFair/fuelanANanh anianhydriteanh aniafter royalty	1	<i>p</i> ,pri	primary
time periods; available secondarily as location subscripts or for other purposes)1,2,3, etc.times or time periods $\frac{1/2}{2}$ half2s,secsecondary ∞ conditions for infinite dimensionsEnglishaAaA,aaA,aaacousticaalteredaAaAaAaAaatmosphere, atmosphericaFair/fuelanANanhanhydriteanianisotropicarafter royalty	1,2,3, etc.		
$\frac{1}{2}$ half2 s, sec secondary conditions for infinite dimensions ∞ $conditions for infinite dimensionsaAabandonmenta cousticaaA, \alphaacousticactive, activity, or actingaaApapparent (general)a through parent (general)aAatmosphere, atmosphericair/fuelanANannulus apparent (from log readings: use tool descriptionsubscripts)anhanhydritearanisotropicafter royalty$	1,2,3, etc.		time periods; available secondarily as location subscripts or
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1,2,3, etc.		times or time periods
$ \begin{tabular}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $	1/2		half
EnglishaAabandonment a A, a acoustic a A, a acoustic a active, activity, or acting a altered a Ap apparent (general) a A atmosphere, atmospheric aF air/fuelanANannulus apparent (from log readings: use tool description subscripts)anhanhydrite ani anisotropic ar after royalty	2	s, sec	secondary
a A abandonment a A, α acoustic a $active, activity, or actingaattreedaApapparent (general)aAatmosphere, atmosphericaFair/fuelanANannulus apparent (from log readings: use tool descriptionsubscripts)anhanhydritearafter royalty$	∞		conditions for infinite dimensions
a A abandonment a A, a acoustic a $active, activity, or actingaattreedaApapparent (general)aAaAaAaFair/fuelanANanhanhydriteanianisotropicarafter royalty$	English		
aactive, activity, or acting a altered a Ap a Ap a A a A aF air/fuelan AN anh anhydrite ani $ansotropic$ ar after royalty	_	A	abandonment
aaltered a Ap apparent (general) a A atmosphere, atmospheric aF air/fuelanANannulus apparent (from log readings: use tool description subscripts)anhanhydriteanianisotropic ar after royalty	а	Α,α	acoustic
$ \begin{array}{cccc} a & Ap & \text{apparent (general)} \\ a & A & \text{atmosphere, atmospheric} \\ aF & air/fuel \\ an & AN & \text{annulus apparent (from log readings: use tool description} \\ & & & \text{subscripts)} \\ anh & anhydrite \\ ani & anisotropic \\ ar & after royalty \\ \end{array} $	а		active, activity, or acting
a A atmosphere, atmospheric aF air/fuelanANannulus apparent (from log readings: use tool description subscripts)anhanhydriteanianisotropic ar after royalty	а		altered
aFair/fuelanANannulus apparent (from log readings: use tool description subscripts)anhanhydrite anianianisotropic after royalty	а	Ap	apparent (general)
anANannulus apparent (from log readings: use tool description subscripts)anhanhydrite aniarafter royalty	а	A	atmosphere, atmospheric
subscripts) anh ani ar after royalty	aF		air/fuel
ani anisotropic ar after royalty	an	AN	
ar after royalty	anh		anhydrite
	ani		anisotropic
at after taxes	ar		after royalty
	at		after taxes
A a amplitude log	A	а	amplitude log
A areal	A		
b B band or oil band	b	В	band or oil band
b bank or bank region	b		bank or bank region
b r,β base	b	r,β	
b bubble	b		
b s,bp bubblepoint (saturation)	b	s,bp	
b B,t bulk (usually with volume, V_b)		B,t	
b B burned or burning	b	В	
bE burned in experimental tube run (usually with volume, V_{bE})	bE		burned in experimental tube run (usually with volume, V_{bE})

Subscript Symbols in Alphabetical Order

	Reserve SPE	
Letter Subscript	Subscript	Subscript Definition
English		
bh	w,BH	bottomhole
bp		bubblepoint or saturation (usually with volume, V_{bp})
Br		before royalty
Bt	В	before taxes
В		turbulence (used with F only, F_B)
BT	bt	breakthrough
С	С	capillary (usually with capillary pressure, P_c)
С	cg	casing or casinghead
С	~	chemical
С	C	compressional wave
С	C	constant
С	С	contact (usually with contact angle, θ_c)
С		conversion (usually with conversion factor in Newton's laws of motion, g_c)
С	С	core
С	cr	critical
С	ec	electrochemical
cap	6 P	capture
cb	CB	cement bond log
cf		casing, flowing (usually with pressure)
cl	cla	clay
cn	cln	clean
cor		corrected
ср		compaction
cs C		casing, static (usually with pressure)
$C \\ C$	calc	calculated
$C \\ C$	С	caliper log coil
$C \\ C$	С	components(s)
$C \\ C$		convective
CB	a h	
CD	cb cd	bond log, cement compensated density log
CD CL	cu cl	chlorine log
CL CN		compensated neutron log
CO	сп	carbon monoxide
CO_2		carbon dioxide
CO_2 C_1		methane
C_1 C_2		ethane
$\frac{c_2}{d}$		decay
d d	δ	delay
d d	δ	depleted region, depletion
d	0	dewpoint
d		differential separation
d d		dip (usually with angle, α_d)
d d	D	dispersed
d	s,D	displaced
d	.,	drainage (usually with drainage radius, r_d)
dh	DH	downhole
dol		dolomite

	Reserve SPE	
Letter Subscript	Subscript	Subscript Definition
English		
dy	dty	dirty (clayey, shaly)
D	d	density log
D		dimensionless quantity
D	s,σ	displacing or displacement (efficiency)
DI	di	dual induction log
DLL	<i>dll</i> (script <i>ll</i>)	dual laterolog
DM	dm	diplog, dipmeter
DR	dr	directional survey
DT	dt	differential temperature log
Db		displacement from burned portion of in-situ combustion pattern (usually with efficiency, E_{Db})
Dm		dimensionless quantity at condition m
Du		displacement from unburned portion of in-situ combustion pattern (usually with efficiency, E_{Du})
е	0	boundary conditions, external
е	i	cumulative influx (encroachment)
е	Е	earth
e	L	effective (or equivalent)
e	Ε	electric, electrical
e	E E	entry
e	2 0	external or outer boundary conditions
el	el (script el)	electron
eq	EV	equivalent
ext		extrapolated
E	е	electrode
Ē	EM	empirical
\overline{E}	est	estimated
Ε	EX	experimental
E_g		experimental value per mole of produced gas (usually with fuel
8		consumption, m_{Eg})
EL	el,ES	electrolog, electrical log, electrical survey
EP	ep	electromagnetic pipe inspection log
f	\overline{F}	finger or fingering
f	F	flash separation
f	fl	fluid
f	fm	formation (rock)
f	R	fraction or fractional
f	F	fracture, fractured, or fracturing
f	F	front, front region, or interface
d		future
f	fm	rock (formation)
F	F	fill-up
F	f	free (usually with gas or gas/oil ration quantities)
F_{\perp}		fuel (usually with fuel properties, such as ρ_F)
Ff		free fluid
Fi		free value, initial (usually with gas, G_{Fi})
F_P	~	cumulative produced free value (usually with gas G_{Fp})
G	G	gas

	Reserve SPE	
Letter Subscript	Subscript	Subscript Definition
English	^	· · · · · · · · · · · · · · · · · · ·
ga		gas at atmospheric conditions
gb		gas at bubblepoint conditions
gD		gas, dimensionless
gr		grain
gyp		gypsum
G		geometrical
ls	lst	limestone
L	ℓ (script <i>l</i>)	lateral, lineal
L	ℓ (script <i>l</i>)	lateral (resistivity log)
L	ℓ (script <i>l</i>)	liquid or liquid phase
L_p		cumulative produced liquid (usually with condensate, G_{Lp})
LL	$\ell\ell$ (script <i>ll</i>)	laterolog (add further tool configuration subscripts as needed)
LLD	$\ell\ell$ (script <i>ll</i>)	deep laterolog
LLS	<i>lls</i> (script <i>ll</i>)	shallow laterolog
LOG	log	log
L_p		liquid produced, cumulative (usually with condensate, G_{Lp})
LP	$\ell p \text{ (script } l \text{)}$	light phase
M		mass of fuel (usually with fuel concentration, C_m)
M		mud
ma		grain (matrix, solids)
ma		matrix [solids except (nonstructural) clay or shale]
max		maximum
mc		mudcake
Mf		mud filtrate
min		minimum
M	z,m	mixture
M		molal (usually with volume, V_M)
M M	m	Mth period or interval
M ML	Z, M	slurry ("mixture")
	$m\ell$ (script l)	contact log, microlog, minilog
MLL	$m\ell\ell$ (script ll)	microlaterolog net
n		normal
n	r,R	normalized (fractional or relative)
<i>n</i> ne	7,1	noneffective
nw	NW	nonwetting
N	n	neutron
N	n	neutron log
N	n	normal (resistivity) log (add numerical spacing to subscript N;
		e.g., <i>N</i> 16)
N_2		nitrogen
NA	na	neutron activation log
NE	ne	neutron log, epithermal
NF	nf	neutron log, fast
NL NM	$n\ell$ (script l)	neutron lifetime log, TDT
NM NT	nm	nuclear magnetism log
	nt N	neutron log, thermal oil (except when used with resistivity)
0	<i>1</i> V	on (except when used with resistivity)

	Reserve SPE	
Letter Subscript	Subscript	Subscript Definition
English		
ob		oil at bubblepoint conditions (usually with formation volume
		factor, B _{ob})
ob		oil from burned volume (usually with displacement ratio, δ_{ob})
оD		oil, dimensionless
og		oil in gas cap (usually with saturation, S_{og})
ou		oil from unburned volume (usually with displacement ratio, δ_{ou})
O_2		oxygen
р	D	particle (usually with diameter, d_p)
p D	Р	pore (usually with volume, V_p)
Р	D	present
p	Р	produced
p	ת	produced, cumulative
p	Р	production period (usually with time, t_p)
$\frac{p}{\overline{p}}$		pseudo
_		pressure, mean or average
pc		pseudocritical
pD		pore value, dimensionless (usually with volume, V_{pD})
pD		pseudodimensionless
pE		produced in experiment
рj		produced component <i>j</i> (usually with moles, n_{pj})
ро		payout
pr		pseudoreduced
pSP		pseudo-SP
pv D		present value
P		pattern (usually with pattern efficiency, E_p)
P		phase or phases
P	p R	proximity log
r	Λ	radius, radial, or radial distance reduced
r	ho	reference
r r	b,p R	relative
r	R	residual
R R	Λ	rate
R		ratio
R		recovery (usually with recovery efficiency, E_R)
R	r	reservoir
R	,	resistivity
R	r,p	resistivity log
Rb	τ,ρ	reservoir rock, burned
Ru		reservoir rock, unburned
Re		Reynolds (used with Reynolds number only, $N_{\rm Re}$)
s	d	damage or damaged (includes "skin" conditions)
S	и	formation, surrounding
S		gas/oil ratio, solution
S	S,σ	segregation (usually with segregation rate, q_s)
S S	τ	shear
s S	σ	
S S	$\overset{ au}{S}$	shear wave skin (stimulation or damage) slip or slippage

	Reserve SPE	
Letter Subscript	Subscript	Subscript Definition
English		
S	σ	solid (usually with volume or density)
S		solution (usually with gas/oil ratios)
S		spacing
S		specific (usually with J and I)
S	S	stabilization (usually with time)
S	S	steam or steam zone
S	S	stimulation (includes "skin" conditions)
S	σ	surface
S	-	surrounding formation
s S	S,σ	swept or swept region
s S	σ	system
sb	Ū	solution at bubblepoint conditions (usually with gas/oil ratio,
50		R_{sb})
sc		scattered, scattering
sc sc	σ	standard conditions
sd	sa	sand
su sE	Sa	solids in experiment
	aha	shale
sh	sha	
si -1	-14	solution, initial (usually with gas/oil ratio, R_{si})
sl	slt	silt
sp		separator conditions
sp		single payment
SS	sst	sandstone
st		stock-tank conditions
st	S	structural
SW		solution in water (usually with gas solubility in water, R_{sw})
S	SW	sidewall
S	s,σ	storage or storage capacity
\overline{S}	$\overline{s}, \overline{\rho}$	saturation, mean or average
SN	sn	neutron log, sidewall
SP	sp	self potential
SSP	ър	spontaneous self potential
SV	SV	sonic, velocity, or acoustic log
SWN	swn	sidewall neutron log
t	T	gross (total)
t t	T T	total
	T T	treatment or treating
t	tr	true (electrical logging) (opposed to apparent)
t		
t t	tg	tubing or tubinghead time, dimensionless
tD		
tf		tubing flowing (usually with pressure)
ti		total initial in place in reservoir
ts	1.0	tubing, static (usually with pressure)
T	h, θ	temperature
T	t,h	temperature log
Т	t	tool, sonde
Т	t	transmissibility
TV	tv	televiewer log, borehole
и		unburned

Letter Subscript	Reserve SPE Subscript	Subscript Definition
· ·	Subscript	Subscript Demittion
English	U	unit
u	U U	und unswept or unswept region
u u	U	upper
u ul	a	ultimate
ui V	u V	vaporization, vapor, or vapor phase
v v	, V	vaporization, vapor, or vapor phase velocity
V	v	vertical
, V	v	volume or volumetric
Vb	,	volumetric or burned portion of in-situ combustion pattern (usually with efficiency, E_{Vb})
VD	vd	microseismogram log, signature log, variable density log
W	W	water
W		well conditions
W	W	wetting
wa		wellbore, apparent (usually with wellbore radius, r_{wa})
wb		water from burned volume (usually with displacement ratio, δ_{wb})
wD		water, dimensionless
wf		bottomhole, flowing (usually with pressure or time)
wf	f	well, flowing conditions (usually with time)
wF		water/fuel
wg		water in gas cap (usually with saturation, S_{wg})
wg		wet gas (usually with composition or content, C_{wg})
wgp		wet gas produced
wh	th	wellhead
wo		water/oil (usually with instantaneous producing water/oil ratio, F_{wo})
wop		water/oil, produced (cumulative) (usually with cumulative water/oil ratio, F_{wop})
WS		static bottomhole (usually with pressure or time)
WS	S	well, static, or shut-in conditions (usually with time)
W	W	weight
xo		flushed zone
Y		Young's modulus, refers to
Z		conductive liquids in invaded zone
Z		zone, conductive invaded

SI Metric Conversion Factors

The following conversion factors are taken from the SPE Metric Standard. The complete standard can be found at www.SPE.org/spe-site/spe/spe/papers/authors/Metric_Standard.pdf.

To Convert From	То	Multiply By**	
abampere	ampere (A)	1.0*	E+01
abcoulomb	coulomb (C)	1.0*	E+01
abfarad	farad (F)	1.0*	E+09
abhenry	henry (H)	1.0*	E-09
abmho	Siemens (S)	1.0*	E+09
abohm	ohm (Ω)	1.0*	Е-09
abvolt	volt (V)	1.0*	E-08
acre-foot (U.S. survey) ⁽¹⁾	meter ³ (m ³)	1.233 489	E+03
acre (U.S. survey) ^{(1)}	$meter^2 (m^2)$	4.046 873	E+03
ampere hour	coulomb (C)	3.6*	E+03
are	$meter^2 (m^2)$	1.0*	E+02
angstrom	meter (m)	1.0*	E-10
astronomical unit	meter (m)	1.495 979	E+11
atmosphere (standard)	pascal (Pa)	1.013 250*	E+05
atmosphere (technical=1 kgf/cm ²)	pascal (Pa)	9.806 650*	E+04
bar	pascal (Pa)	1.0*	E+05
barn	$meter^2 (m^2)$	1.0*	E-28
barrel (for petroleum, 42 gal)	$meter^{3}(m^{3})$	1.589873	E-01
board foot	$meter^{3}(m^{3})$	2.359 737	E-03
British thermal unit (International Table) ⁽²⁾	joule (J)	1.055 056	E+03
British thermal unit (mean)	joule (J)	1.055 87	E+03
British thermal unit (thermochemical)	joule (J)	1.054 350	E+03
British thermal unit (39°F)	joule (J)	1.059 67	E+03
British thermal unit (59°F)	joule (J)	1.054 80	E+03
British thermal unit (60°F)	joule (J)	1.054 68	E+03
Btu (International Table)-ft/(hr-ft ² -°F)	watt per meter Kelvin	1.730 735	E+00
(thermal conductivity)	[W/(m-K)]		
Btu (thermochemical)-ft/(hr-ft ² -°F)	watt per meter Kelvin	1.729 577	E+00
(thermal conductivity)	[W/(m-K)]		
Btu (International Table)-in./(hr-ft ² -°F)	watt per meter Kelvin	1.442 279	E-01
(thermal conductivity)	[W/(m-K)]		
Btu (thermochemical)-in./(hr-ft ² -°F)	watt per meter Kelvin	1.441 314	E-01
(thermal conductivity)	[W/(m-K)]		
Btu (International Table)-in./(s-ft ² -°F)	watt per meter Kelvin	5.192 204	E+02
(thermal conductivity)	[W/(m-K)]		

ALPHABETICAL LIST OF UNITS (symbols of SI units given in parentheses)

*An asterisk indicates that the conversion factor is exact using the numbers shown; all subsequent number are zeros. **See footnote.

⁽¹⁾Since 1893, the U.S. basis of length measurement has been derived from metric standards. In 1959, a small refinement was made in the definition of the yard to resolve discrepancies both in this country and abroad, which changed its length from 3600/3937 m to 0.9144 m exactly. This resulted in the new value being shorter by two parts in a million. At the same time, it was decided that any data in feet derived from and published as a result of geodetic surveys within the U.S. would remain with the old standard (1 ft=1200/3937 m) until further decision. This foot is named the U.S. survey foot. As a result, all U.S. land measurements in U.S. customary units will relate to the meter by the old standard. All the conversion factors in these tables for units referenced to this footnote are based on the U.S. survey foot, rather than the international foot. Conversion factors for the land measure given below may be determined from the following relationships:

> 1 league=3 miles (exactly) 1 rod=16½ ft (exactly) 1 chain=66 ft (exactly) 1 section=1 sq mile 1 township=36 sq miles

 $^{(2)}$ This value was adopted in 1956. Some of the older International Tables use the value 1.055 04 E+03. The exact conversion factor is 1.055 055 852 62* E+03.

To Convert From	То	Multi	iply By**
Btu (thermochemical)-in./(s-ft ² -°F)	watt per meter Kelvin	5.188 732	E+02
(thermal conductivity)	[W/(m-K)]		
Btu (International Table)/hr	watt (W)	2.930 711	E-01
Btu (thermochemical)/hr	watt (W)	2.928 751	E-01
Btu (thermochemical)/min	watt (W)	1.757 250	E+01
Btu (thermochemical)/s	watt (W)	1.054 350	E+03
Btu (International Table)/ft ²	joule per meter ² (J/m^2)	1.135 653	E+04
Btu (thermochemical)/ft ²	joule per meter ² (J/m^2)	1.134 893	E+04
Btu (thermochemical)/(ft ² -hr)	watt per meter ² (W/m^2)	3.152 481	E+00
Btu (thermochemical)/(ft ² -min)	watt per meter ² (W/m^2)	1.891 489	E+02
Btu (thermochemical)/(ft ² -s)	watt per meter ² (W/m^2)	1.134 893	E+04
Btu (thermochemical)/(in. ² -s)	watt per meter ² (W/m^2)	1.634 246	E+06
Btu (International Table)/(hr-ft ² -°F)	watt per meter ² kelvin	5.678 263	E+00
(thermal conductance)	$[W/(m^2-K)]$		
Btu (thermochemical)/(hr-ft ² -°F)	watt per meter ² kelvin	5.674 466	E+00
(thermal conductance)	$[W/(m^2-K)]$		
Btu (International Table)/(s-ft ² -°F)	watt per meter ² kelvin $[W/(m^2-K)]$	2.044 175	E+04
Btu (thermochemical)/(s-ft ² -°F)	watt per meter ² kelvin $[W/(m^2-K)]$	2.042 808	E+04
Btu (International Table)/lbm	joule per kilogram (J/kg)	2.326*	E+03
Btu (thermochemical)/lbm	joule per kilogram (J/kg)	2.324 444	E+03
Btu (International Table)/(lbm-°F)	joule per kilogram Kelvin	4.186 8*	E+03
(heat capacity)	[J/(kg-K)]		2 00
Btu (thermochemical)/(lbm-°F)	joule per kilogram Kelvin	4.184 000	E+03
(heat capacity)	[J/(kg-K)]		
bushel (U.S.)	meter ³ (m ³)	3.523 907	E-02
caliber (inch)	meter (m)	2.54*	E-02
calorie (International Table)	joule (J)	4.186 8*	E+00
calorie (mean)	joule (J)	4.190 02	E+00
calorie (thermochemical)	joule (J)	4.184*	E+00
calorie (15°C)	joule (J)	4.185 80	E+00
calorie (20°C)	joule (J)	4.181 90	E+00
calorie (kilogram, International Table)	joule (J)	4.186 8*	E+03
calorie (kilogram, mean)	joule (J)	4.190 02	E+03
calorie (kilogram, thermochemical)	joule (J)	4.185*	E+03
cal (thermochemical)/cm ²	joule per meter ² (J/m^2)	4.184*	E+04
cal (International Table)/g	joule per kilogram (J/kg)	4.184*	E+03
cal (International Table)/(g-°C)	joule per kilogram	4.186 8*	E+03
	kelvin [J/(kg-K)]		
cal (thermochemical)/(g-°C)	joule per kilogram Kelvin [J/(kg-K)]	4.184*	E+03
cal (thermochemical)/min	watt (W)	6.973 333	E-02
cal (thermochemical)/s	watt (W)	4.184*	E+04
cal (thermochemical)/(cm ² -min)	watt per meter ² (W/m^2)	6.973 333	E+02
cal (thermochemical)/(cm ² -s)	watt per meter ² (W/m^2)	4.184*	E+04
cal (thermochemical)/(s-°C)	watt per meter kelvin	4.184*	E+02
	[W/(m-K)]		-
capture unit (c.u.= 10^{-3} cm ⁻¹)	per meter (m^{-1})	1.0*	E-01
carat (metric)	kilogram (kg)	2.0*	E-04
centimeter of mercury $(0^{\circ}C)$	pascal (Pa)	1.333 22	E+03
centimeter of water $(4^{\circ}C)$	pascal (Pa)	9.806 38	E+03 E+01
centipoises	pascal second (Pa \cdot s)	1.0*	E-03
	r	1.0	

To Convert From	То	Multi	ply By**
centistrokes	meter ² per second (m^2/s)	1.0*	E-06
circular mil	meter ² (m ²)	5.067 075	E-10
cio	kelvin meter ² per watt	2.003 712	E-01
	$[K-m^2/W]$	2.000 / 12	2 01
cup	meter ³ (m^3)	2.365 882	E-04
curie	becquerel (Bq)	3.7*	E+10
cycle per second	hertz (Hz)	1.0*	E+00
day (mean solar)	second (s)	8.640 000	E+04
day (sidereal)	second (s)	8.616 409	E+04
degree (angle)	radian (rad)	1.745 329	E-02
degree Celsius	kelvin (K)	$T_{\rm K} = T_{\rm \circ C} + 2.73.$	
degree centigrade (see degree Celsius)	kervin (K)	IK 1.C. 2.75.	10
degree Fahrenheit	degree Celsius	$T_{\circ C} = (T_{\circ F} - 32)/$	18
degree Fahrenheit	kelvin (K)	$T_{\rm K} = (T_{\rm F} + 459.6)$	
degree Rankine	Kelvin (K)	$T_{\rm K} = T_{\rm oF}/1.8$	07)/1.0
°F-hr-ft ² /Btu (International Table)	kelvin meter ² per watt	1.781 102	E-01
(thermal resistance)	$[(K-m^2)/W]$	1.701 102	L 01
°F-hr-ft ² /Btu (thermochemical)	kelvin meter ² per watt	1.762 250	E-01
(thermal resistance)	$[(K-m^2)/W]$	1.702 250	L 01
Denier	kilogram per meter	1.111 111	E-07
Demer		1.111 111	E 07
Dumo	(kg/m)	1.0*	E 05
Dyne dyna am	newton (N)	1.0*	E-05 E-07
dyne-cm	newton meter $(N \cdot m)$		
dyne/cm ²	pascal (Pa)	1.0*	E-01
electronvolt	joule (J)	1.602 19	E-19
EMU of capacitance	farad (F)	1.0*	E+09
EMU of current	ampere (A)	1.0*	E+01
EMU of electric potential	volt (V)	1.0*	E-08
EMU of inductance	henry (H)	1.0*	E-09
EMU of resistance	$ohm(\Omega)$	1.0*	E-09
ESU of capacitance	farad (F)	1.112 650	E-12
ESU of current	ampere (A)	3.335 6	E-10
ESU of electric potential	volt (V)	2.997 9	E+02
ESU of inductance	henry (H)	8.987 554	E+11
ESU of resistance	$ohm(\Omega)$	8.987 554	E+11
Erg	joule (J)	1.0*	E-07
erg/cm ² -s	watt per meter ² (W/m^2)	1.0*	E-03
erg/s	watt (W)	1.0*	E-07
faraday (based on carbon-12)	coulomb (C)	9.648 70	E+04
faraday (chemical)	coulomb (C)	9.649 57	E+04
faraday (physical)	coulomb (C)	9.652 19	E+04
fathom	meter (m)	1.828 8	E+00
fermi (femtometer)	meter (m)	1.0*	E-15
fluid ounce (U.S.)	meter ³ $(m)^3$	2.957 353	E-05
foot	meter (m)	3.048*	E-01
foot (U.S. survey) ⁽¹⁾	meter (m)	3.048 006	E-01
foot of water (39.2°F)	pascal (Pa)	2.988 98	E+03
sq ft	meter ² (m ²)	9.290 304*	E-02
ft ² /hr (thermal diffusivity)	meter ² per second (m^2/s)	2.580 640*	E-05
ft ² /s	meter ² per second (m^2/s)	9.290 304*	E-02
cu ft (volume; section modulus)	meter ³ (m^3)	2.831 685	E-02
ft ³ /min	meter ³ per second (m^3/s)	4.719 474	E-04

_

To Convert From	То	Multip	ly By**
ft ³ /s	meter ³ per second (m^3/s)	2.831 685	E-02
ft^4 (moment of section) ⁽⁴⁾	meter ⁴ (m^4)	8.630 975	E-02 E-03
ft/hr	meter per second (m/s)	8.466 667	E-05
ft/min	meter per second (m/s)	5.080*	E-03
ft/s	meter per second (m/s)	3.048*	E-01
ft/s^2	meter per second ² (ms/s ²)	3.048*	E-01
footcandle	lux (lx)	1.076 391	E+01
footlambert	candela per meter ² (cd/m ²)	3.426 259	E+00
ft-lbf	ioule (J)	1.355 818	E+00
ft-lbf/hr	watt (W)	3.766 161	E-04
ft-lbf/min	watt (W)	2.259 697	E-02
ft-lbf/s	watt (W)	1.355 818	E+00
ft-poundal	joule (J)	4.214 011	E-02
free fall, standard (g)	meter per second ² (m/s ²)	9.806 650*	E+00
cm/s^2	meter per second (m/s^2)	1.0*	E-02
gallon (Canadian liquid)	meter ³ (m^3)	4.546 090	E-03
gallon (U.K. liquid)	meter ³ (m ³)	4.546 092	E-03
gallon (U.S. dry)	meter ³ (m ³)	4.404 884	E-03
gallon (U.S. liquid)	meter ³ (m ³)	3.785 412	E-03
gal (U.S. liquid)/day	meter ³ per second (m^3/s)	4.381 264	E-08
gal (U.S. liquid)/min	meter ³ per second (m^3/s)	6.309 020	E-05
(SFC, specific fuel consumption)	meter ³ per joule (m^3/J)	1.410 089	E-09
gamma (magnetic field strength)	ampere per meter (A/m)	7.957 747	E-04
gamma (magnetic flux density)	tesla (T)	1.0*	E-04 E-09
gauss	tesla (T)	1.0*	E-04
gilbert	ampere (A)	7.957 747	E-01
gill (U.K.)	meter ³ (m ³)	1.420 654	E-04
gill (U.S.)	meter ³ (m ³)	1.182 941	E-04 E-04
grad	degree (angular)	9.0*	E-01
grad	radian (rad)	1.570 796	E-01 E-02
grain (1/7000 lbm avoirdupois)	kilogram (kg)	6.479 891*	E-02 E-05
grain (17/000 loin avoirdupois) grain (lbm avoirdupois/7000)/gal	kilogram per meter ³	1.711 806	E-03 E-02
(U.S. liquid)	(kg/m^3)	1.711 000	L 02
gram	kilogram (kg)	1.0*	Е-03
g/cm ³	kilogram per meter ³	1.0*	E+03
gjenn	(kg/m^3)	1.0	E · 05
gram-force/cm ²	pascal (Pa)	9.806 650*	E+01
hectare	meter ² (m ²)	1.0*	E+04
horsepower (550 ft-lbf/s)	watt (W)	7.456999	E+02
horsepower (boiler)	watt (W)	9.809 50	E+03
horsepower (electric)	watt (W)	7.460*	E+02
horsepower (metric)	watt (W)	7.354 99	E+02
horsepower (U.K.)	watt (W)	7.4570	E+02
hour (mean solar)	second (s)	3.600 000	E+03
hour (sidereal)	second (s)	3.590 170	E+03
hundredweight (long)	kilogram (kg)	5.080 235	E+01
hundredweight (short)	kilogram (kg)	4.535 924	E+01
inch	meter (m)	2.54*	E-02
inch of mercury (32°F)	pascal (Pa)	3.386 38	E+03
inch of mercury (60°F)	pascal (Pa)	3.376 85	E+03
inch of water (39.2°F)	pascal (Pa)	2.490 82	E+02

 $^{(3)}$ The exact conversion factor is 1.638 706 4*E–05.

To Convert From	То	Multiply By**	
inch of water (60°F)	pascal (Pa)	2.488 4	E+02
sq in.	$meter^2(m^2)$	6.451 6*	E-04
cu in. (volume; section modulus) $^{(3)}$	meter ³ (m^3)	1.638 706	E-05
in. ³ /min	meter ³ per second (m^3/s)	2.731 177	E-07
in. ⁴ (moment of section) ^{(4)}	meter ⁴ (m ⁴)	4.162 314	E-07
in./s	meter per second (m/s)	2.54*	E-02
in./s ²	meter per second ² (m/s^2)	2.54*	E-02
kayser	1 per meter (1/m)	1.0*	E+02
Kelvin	degree Celsius	$T_{\circ C} = T_{\rm K} - 273.15$	
kilocalorie (International Table)	joule (J)	4.186 8*	E+03
kilocalorie (mean)	joule (J)	4.190 02	E+03
kilocalorie (thermochemical)	joule (J)	4.184*	E+03
kilocalorie (thermochemical)/min	watt (W)	6.973 333	E+01
kilocalorie (thermochemical)/s	watt (W)	4.184*	E+03
kilogram-force (kgf)	newton (N)	9.806 65*	E+00
kgf·m	newton meter (N·m)	9.806 65*	E+00
$kgf \cdot s^2/m$ (mass)	kilogram (kg)	9.806 65*	E+00
kgf/cm ²	pascal (Pa)	9.806 65*	E+04
kg/m ²	pascal (Pa)	9.806 65*	E+00
kgf/mm ²	pascal (Pa)	9.806 65*	E+06
km/h	meter per second (m/s)	2.777 778	E-01
kilopond	newton (N)	9.806 65*	E+00
kilowatt-hour (kW-hr)	joule (J)	3.6*	E+06
kip (1000 lbf)	newton (N)	4.448 222	E+03
kip/in. ² (ksi)	pascal (Pa)	6.894 757	E+06
knot (international)	meter per second (m/s)	5.144 444	E-01
lambert	candela per meter ² (cd/m^2)	$1/\pi^*$	E+04
lambert	candela per meter ² (cd/m^2)	3.183 099	E+03
langley	joule per meter ² (J/m^2)	4.184*	E+04
league	meter (m)	(see Footnote 1)	
light year	meter (m)	9.460 55	E+15
liter ⁽⁵⁾	meter ³ (m ³)	1.0*	E-03
Maxwell	weber (Wb)	1.0*	E-08
mho	siemens (S)	1.0*	E+00
microinch	meter (m)	2.54*	E-08
microsecond/foot	microsecond (µs/m)	3.280 840	E+00
micron	meter (m)	1.0*	E-06
mil	meter (m)	2.54*	Е-05
mile (international)	meter (m)	1.609 344*	E+03
mile (statute)	meter (m)	1.609 3	E+03
mile (U.S. survey) ⁽¹⁾	meter (m)	1.609 347	E+03
mile (international nautical)	meter (m)	1.852*	E+03
mile (U.K. nautical)	meter (m)	1.853 184*	E+03
mile (U.S. nautical)	meter (m)	1.852*	E+03
sq mile (international)	meter ² (m ²)	2.589 988	E+06
sq mile (U.S survey)	meter ² (m ²)	2.589 998	E+06
mile/hr (international)	meter per second (m/s)	4.470 4*	E-01
mile/hr (international)	kilometer per hour (km/h)	1.609 344*	E+00
mile/min (international)	meter per second (m/s)	2.682 24*	E+01
(r		-

 ⁽⁴⁾ This sometimes is called the moment of inertia of a plane section about a specified axis.
 ⁽⁵⁾ In 1964, the General Conference on Weights and Measures adopted the name "liter" as a special name for the cubic decimeter.
 Prior to this decision, the liter differed slightly (previous value: 1.000 028 dm³), and in expression of precision volume measurement, this fact must be kept in mind.

To Convert From	То	Multip	ly By**
mile/s (international)	meter per second (m/s)	1.609 344*	E+03
millibar	pascal (Pa)	1.0*	E+02
millimeter of mercury (0°C)	pascal (Pa)	1.333 22	E+02
minute (angle)	radian (rad)	2.908 882	E-04
minute (mean solar)	second (s)	6.0*	E+01
minute (sidereal)	second (s)	5.983 617	E+01
month (mean calendar)	second (s)	2.628 000	E+01 E+06
oersted	ampere per meter (A/m)	7.957 747	E+00 E+01
ohm centimeter	ohm meter ($\Omega \cdot m$)	1.0*	E-01 E-02
ohm circular-mil per ft	ohm millimeter ² per meter	1.66 426	E-02 E-03
onin encular-nin per ft	$[(\Omega \cdot mm^2/m]$		E=03
ounce (avoirdupois)	kilogram (kg)	2.834 952	E-02
ounce (troy or apothecary)	kilogram (kg)	3.110 348	E-02
ounce (U.K. fluid)	meter ³ (m^3)	2.841 307	Е-05
ounce (U.S. fluid)	meter ³ (m ³)	2.957 353	E-05
ounce-force	newton (N)	2.780 139	E-01
ozf-in.	newton meter (N·m)	7.061 552	Е-03
oz (avoirdupois)/gal (U.K. liquid)	kilogram per meter ³	6.236 021	E+00
	(kg/m^3)		
oz (avoirdupois)/gal (U.S. liquid)	kilogram per meter ³ (kg/m^3)	6.236 021	E+00
oz (avoirdupois)/in. ³	kilogram per meter ³ (kg/m ³)	1.729 994	E+03
oz (avoirdupois)/ft ²	(kg/m ²) kilogram per meter ² (kg/m ²)	3.051 517	E-01
oz (avoirdupois)/yd ²	(kg/m^2) (kg/m^2)	3.390 575	E-02
parsec	meter (m)	3.085 678	E+16
pack (U.S.)	meter ³ (m ³)	8.809 768	E-03
pennyweight	kilogram (kg)	1.555 174	E-03
perm (°C) ⁽⁶⁾	kilogram per pascal	5.721 35	E-05 E-11
	second meter ² $[kg/(Pa \cdot s \cdot m^2)]$	5.721 55	LII
perm $(23^{\circ}C)^{(6)}$	kilogram per pascal	5.745 25	E-11
	second meter ²		
	$[kg/(Pa\cdot s\cdot m^2)]$		
perm-in. $(0^{\circ}C)^{(7)}$	kilogram per pascal	1.453 22	E-12
1 ()	second meter		
	[kg/(Pa·s·m)]		
perm-in. $(23^{\circ}C)^{(7)}$	kilogram per pascal	1.459 29	E-12
point in: (25°C)	second meter	1.139 29	12 12
	[km/(Pa·s·m)]		
nhot	lumen per meter ² (lm/m^2)	1.0*	E+04
phot pice (printer's)	meter (m)	4.217 518	E=04 E=03
pica (printer's)			
pint (U.S. dry)	meter ³ (m ³)	5.506 105	E-04
pint (U.S. liquid)	$meter^{3}(m^{3})$	4.731 765	E-04
point (printer's)	meter (m)	3.514 598*	E-04
poise (absolute viscosity)	pascal second (Pa·s)	1.0*	E-01
pound (lbm avoirdupois) ⁽⁸⁾	kilogram (kg)	4.535 924	E-01
pound (troy or apothecary)	kilogram (kg)	3.732 417	E-01

⁽⁶⁾ Not the same as reservoir "perm."
⁽⁷⁾ Not the same dimensions as "millidarcy-foot."
⁽⁸⁾ The exact conversion factor is 4.535 923 7*E-01.

To Convert From	То	Multip	ly By**
lbm-ft ² (moment of inertia)	kilogram meter ² (kg·m ²)	4.214 011	E-02
lbm-in ² (moment of inertia)	kilogram meter ² (kg·m ²)	2.926 397	E-04
lbm/ft-hr	pascal second ($Pa \cdot s$)	4.133 789	E-04
lbm/ft-s	pascal second (Pa \cdot s)	1.488 164	E+00
lbm/ft ²	kilogram per meter ²	4.882 428	E+00
	(kg/m^2)	4.002 420	L+00
lbm/ft ³	(kg/m^3)	1.601 846	E+01
lbm/gal (U.K. liquid)	kilogram per meter ³ (kg/m ³)	9.977 633	E+01
lbm/gal (U.S. liquid)	kilogram per meter ³ (kg/m ³)	1.198 264	E+02
lbm/hr	kilogram per second (kg/s)	1.259 979	E-04
lbm/hr	kilogram per joule (kg/J)	1.689 659	Е-07
lbm/(hp-hr) (SFC, specific fuel consumption)			
lbm/in. ³	kilogram per meter ³	2.767 990	E+04
	(kg/m^3)		
lbm/min	kilogram per second (kg/s)	7.559 873	E-03
lbm/s	kilogram per second (kg/s)	4.535 924	E-01
lbm/yd ³	kilogram per meter ³ (kg/m ³)	5.932 764	E-01
poundal	newton (N)	1.382 550	E-01
poundal/ft ²	pascal (Pa)	1.488 164	E+00
poundal-s/ft ²	pascal second (Pa·s)	1.488 164	E+00
pound-force (lbf) ⁽⁹⁾	newton (N)	4.448 222	E+00
lbf-ft ⁽¹⁰⁾	newton meter (N·m)	1.355 818	E+00
$lbf-ft^{(11)}$	newton meter per meter [(N·m)/m)]	5.337 866	E+01
lbf-in. ⁽¹¹⁾	newton meter (N·m)	1.129 848	E-01
lbf-in./in. ⁽¹¹⁾	newton meter per meter	4.448 222	E+00
	[(N·m)/m)]		
lbf-s/ft ²	pascal second (Pa·s)	4.788 026	E+01
lbf/ft	newton per meter (N/m)	1.459 390	E+01
lbf/ft ²	pascal (Pa)	4.788 026	E+01
lbf/in.	newton per meter (N/m)	1.751 268	E+02
lbf/in. ² (psi)	pascal (Pa)	6.894 757	E+03
lbf/lbm (thrust/weight [mass] ratio)	newton per kilogram (N/kg)	9.806 650	E+00
quart (U.S. dry)	meter ³ (m ³)	1.101 221	Е-03
quart (U.S. liquid)	meter ³ (m^3)	9.463 529	E-04
rad (radiation dose absorbed)	gray (Gy)	1.0*	E-02
rhe	1 per pascal second [1/(Pa·s)]	1.0*	E+01
rod	meter (m)	(see Footnote 1)
roentgen	coulomb per kilogram	2.58	E-04
	(C/kg)		
second (angle)	radian (rad)	4.848 137	E-06
second (sidereal)	second (s)	9.972 696	E-01

⁽⁹⁾The exact conversion factor is 4.448 615 260 5*E+00.
 ⁽¹⁰⁾Torque unit; see text discussion of "Torque and Bending Moment."
 ⁽¹¹⁾Torque divided by length; see text discussion of "Torque and Bending Moment."

To Convert From	То	Multiply By**	
section	$meter^2 (m^2)$	(see Footnote 1	.)
shake	second(s)	1.000 000*	E-08
slug/(ft-s)	pascal second (Pa·s)	4.788 026	E+01
slug/ft ³	kilogram per meter ³	5.153 788	E+02
	(kg/m^3)		
statampere	ampere (A)	3.335 640	E-10
statcoulomb	coulomb (C)	3.335 640	E-10
statfarad	farad (F)	1.112 650	E-12
stathenry	henry (H)	8.987 554	E+11
statmho	seimens (S)	1.112 650	E-12
statohm	ohm (Ω)	8.987 554	E+11
statvolt	volt (V)	2.997 925	E+02
stere	meter ³ (m ³)	1.0*	E+00
stilb	candela per meter ² (cd/m ²)	1.0*	E+04
strokes (kinematic viscosity)	meter ² per second (m^2/s)	1.0*	E-04
tablespoon	meter ³ (m^3)	1.478 676	Е-05
teaspoon	meter ³ (m ³)	4.928 922	E-06
tex	kilogram per meter (kg/m)	1.0*	E-06
therm	joule (J)	1.055 056	E+08
ton (assay)	kilogram (kg)	2.916 667	E-02
ton (long, 2.240 lbm)	kilogram (kg)	1.016 047	E+03
ton (metric)	kilogram (kg)	1.0*	E+03
ton (nuclear equivalent of TNT)	joule (J)	4.184	E+09 ⁽¹²⁾
ton (refrigeration)	watt (W)	3.516 800	E+03
ton (register)	meter ³ (m ³)	2.831 685	E+00
ton (short, 2,000 lbm)	kilogram (kg)	9.071 847	E+02
ton $(long)/yd^3$	kilogram per meter ³	1.328 939	E+03
	(kg/m^3)		
ton (short)/hr	kilogram per second (kg/s)	2.519 958	E-01
ton-force (2,000 lbf)	newton (N)	8.896 444	E+03
tonne	kilogram (kg)	1.0	E+03
torr (mm Hg, 0°C)	pascal (Pa)	1.333 22	E+02
township	meter ² (m ²)	(see Footnote 1)
unit pole	weber (Wb)	1.256 637	E-07
watthour (W-hr)	joule (J)	3.60*	E+03
W·s	joule (J)	1.0*	E+00
W/cm ²	watt per meter ² (W/m ²)	1.0*	E+04
W/in. ²	watt per meter ² (W/m^2)	1.550 003	E+03
yard	meter (m)	9.144	E-01
yd ²	$meter^2 (m^2)$	8.361 274	E-01
yd ³	meter ³ (m^3)	7.645 549	E-01
yd ³ /min	meter ³ per second (m^3/s)	1.274 258	E-02
year (calendar)	second (s)	3.153 600	E+07
year (sidereal)	second (s)	3.155 815	E+07
year (tropical)	second (s)	3.155 693	E+07

Location	Value of Vara in Inches	Conversion Factor, Varas to Meters	
Argentina, Paraguay	34.12	8.666	E-01
Cadiz, Chile, Peru	33.37	8.476	E-01
California,	33.3720	8.476 49	E-01
except San Francisco			
San Francisco	33.0	8.38	E-01
Central America	33.87	8.603	E-01
Colombia	31.5	8.00	E-01
Honduras	33.0	8.38	E-01
Mexico		8.380	E-01
Portugal, Brazil	43.0	1.09	E+00
Spain Cuba, Venezuela, Philippine Islands	33.38**	8.479	E-01
Texas,			
26 January 1801 to 27 January 1838	32.8748	8.350 20	E-01
27 January 1838 to 17 June 1919, for			
surveys of state land made for land office	331/3	8.466 667	E-01
27 January 1838 to 17 June 1919,			
on private surveys (unless change to $33^{1/3}$			
by custom arising to dignity of law and			
overcoming former law)	32.8748	8.350 20	E-01
17 June 1919 to present	331/3	8.466 667	E-01

CONVERSION FACTORS FOR THE VARA*

*Per P.G. McElwee (*The Texas Vara*; available from the General Land Office, State of Texas, Austin, 30 April 1940) it is evident that accurate defined lengths of the vara vary significantly, according to historical data and locality used. For work requiring accurate conversions, the user should check closely into the date and location of the surveys involved, with due regard to what local practice may have been at that time and place.

**This value quoted from Webster's New International Dictionary.

			"Ballpark" Metric Values
Customary Unit	(Do Not Use as Conversion Factors)		
acre	5	4000	square meters
	Ì	0.4	hectare
barrel		0.16	cubic meter
British thermal unit		1000	joules
British thermal unit per pound-mass	5	2300	joules per kilogram
	Ì	2.3	kilojoules per kilogram
calorie		4	joules
centipoise		1*	millipascal-second
centistokes		1*	square millimeter per second
darcy		1	square micrometer
degree Fahrenheit (temperature difference)		0.5	Kelvin
dyne per centimeter		1*	millinewton per meter
foot	5	30	centimeters
	{	0.3	meter
cubic foot (cu ft)		0.03	cubic meter
cubic foot per pound-mass (ft ³ /lbm)		0.06	cubic meter per kilogram
square foot (sq ft)		0.1	square meter
foot per minute	5	0.3	meter per minute
	Ì	5	millimeters per second
foot-pound-force		1.4	joules
foot-pound-force per minute		0.02	watt
foot-pound-force per second		1.4	watts
horsepower		750	watts (³ / ₄ kilowatt)
horsepower, boiler		10	kilowatts
inch		2.5	centimeters
kilowatt-hour		3.6*	megajoules
mile		1.6	kilometers
ounce (avoirdupois)		28	grams
ounce (fluid)		30	cubic centimeters
pound-force		4.5	newtons
pound-force per square inch (pressure, psi)		7	kilopascals
pound-mass		0.5	kilogram
pound-mass per cubic foot		16	kilograms per cubic meter
	(260	hectares
section	4	2.6	million square meters
		2.6	square kilometers
ton, long (2240 pounds-mass)		1000	kilograms
ton, metric (tonne)		1000*	kilograms
ton, short		900	kilograms

"MEMORY JOGGER"—METRIC UNITS

*Exact equivalents

Unit			
Symbol	Name	Quantity	Type of Unit
A	ampere	electric current	base SI unit
а	annum (year)	time	allowable (not official SI) unit
Bq	becquerel	activity (of	derived SI unit =1/s
- 1		radionuclides)	
bar	bar	pressure	allowable (not official SI) unit,=10 ³ Pa
C	coulomb	quantity of electricity	derived SI unit, $=1 \text{ A} \cdot \text{s}$
cd	candela	luminous intensity	base SI unit
°C	degree Celsius	temperature	derived SI unit =1.0 K
0	degree	plane angle	allowable (not official SI) unit
d	day	time	allowable (not official SI) unit, =24 hours
F	farad	electric capacitance	derived SI unit, =1 $A \cdot s/V$
Gy	gray	absorbed dose	derived SI unit, =J/kg
g	gram	mass	allowable (not official SI) unit, $=10^{-3}$ kg
В Н	henry	inductance	derived SI unit, =1 $V \cdot s/A$
h	hour	time	allowable (not official SI) unit, $=3.6 \times 10^3$ s
Hz	hertz	frequency	derived SI unit, =1 cycle/s
ha	hectare	area	allowable (not official SI) unit, $=10^4 \text{ m}^2$
J	joule	work, energy	derived SI unit, $=1$ N·m
ĸ	kelvin	temperature	base SI unit
kg	kilogram	mass	base SI unit
kn	knot	velocity	allowable (not official SI) unit,
			$=5.144444 \times 10^{-1} \text{m/s}$
			=1.852 km/h
L	liter	volume	allowable (not official SI) unit, $=1 \text{ dm}^3$
lm	lumen	luminous flux	derived SI unit, $=1$ cd·sr
lx	lux	illuminance	derived SI unit, =1 lm/m^2
m	meter	length	base SI unit
min	minute	time	allowable (not official SI) unit
,	minute	plane angle	allowable cartography (not official SI) unit
Ν	newton	force	derived SI unit, =1 kg·m/s ²
naut. mile	U.S. nautical	length	allowable (not official SI) unit, = 1.852×10^3 m
	mile		
Ω	ohm	electric resistance	derived SI unit, =1 V/A
Pa	pascal	pressure	derived SI unit, =1 N/m^2
rad	radian	plane angle	supplementary SI unit
S	siemens	electrical conductance	derived SI unit, =1 A/V
s	second	time	base SI unit
"	second	plane angle	allowable cartography (not official SI) unit
sr	steradian	solid angle	supplementary SI unit
T	tesla	magnetic flux density	derived SI unit, =1 Wb/m^2
t	tonne	mass	allowable (not official SI) unit, $=10^3$ kg $=1$ Mg
V	volt	electric potential	derived SI unit, =1 W/A
Ŵ	watt	power	derived SI unit, =1 J/s
Wb	weber	magnetic flux	derived SI unit, $=1$ V·s

NOMENCLATURE FOR TABLES 1 AND 2 (see pages 153–170)

TABLE 1-		—TABLES OF RECOMMENDED SI UNITS			Conversion Factor:*		
			Met	Metric Unit		Multiply Customary	
		Customary	SPE	Other	Unit by Fa	actor To	
Quantity and SI	Unit	Unit	Preferred	Allowable	Get Metr	ic Unit	
		SPAC	E,** TIME				
Length	m	naut mile	km		1.852*	E+00	
		mile	km		1.609 344*	E+00	
		chain	m		2.011 68*	E+01	
		link	m		2.011 68*	E-01	
		fathom	m		1.828 8*	E+00	
		m	m		1.0*	E+00	
		yd	m		9.144*	E-01	
		ft	m		3.048*	E-01	
				cm	3.048*	E+01	
		in.	mm		2.54*	E+01	
				cm	2.54*	E+00	
		cm	mm	• • • •	1.0*	E+01	
		••••		cm	1.0*	E+00	
		mm	mm	•	1.0	E+00	
		mil	μm		2.54*	E+01	
		micron (µ)	μm		1.0*	E+01	
Length/length	m/m	ft/mi	m/km		1.893 939	E-01	
Length/volume	m/m^3	ft/U.S. gal	m/m^3		8.051 964	E+01	
Lengui/volume	111/111	ft/ft^3	m/m^3		1.076 391	E+01	
		ft/bbl	m/m^3		1.917 134	E+01 E+00	
Length/temperature	m/K	see "Temperatu		······»	1.917 134	$\Gamma + 00$	
Area	m^2	sq mile	km^2	Juum	2.589 988	E+00	
Alta	111	section	km^2		2.589 988	E+00 E+00	
		section	KIII	ha	2.589 988	E+00 E+02	
		0.0*0	m ²	па		E+02 E+03	
		acre	111	ha	4.046 856	E+03 E-01	
		1	m ²	ha	4.046 856 1.0*		
		ha	m^{2}			E+04	
		sq yd			8.361 274	E-01	
		sq ft	m^2	2	9.290 304*	E-02	
			2	cm^2	9.290 304*	E+02	
		sq in.	mm ²	2	6.451 6*	E+02	
		2	2	cm ²	6.451 6*	E+00	
		cm ²	mm^2	2	1.0*	E+02	
		2	2	cm ²	1.0*	E+00	
	2, 2	mm^2	mm^2		1.0*	E+00	
Area/volume	m^{2}/m^{3}	ft^2	m^2/cm^3		5.699 291	E-03	
Area/mass	m²/kg	cm	m ² /kg		1.0*	E-01	
			m^2/g^2		1.0*	E-04	

TABLE 1—TABLES OF RECOMMENDED SI UNITS

*An asterisk indicates that the conversion factor is exact using the numbers shown; all subsequent number are zeros. **Conversion factors for length, area, and volume (and related quantities) in Table 1 are based on the international foot. See Footnote 1 in the Alphabetical List of Units.

		TABLES OF RECO		Metric Unit		Factor:* ustomary
		Customary	SPE	Other	Unit by Fa	
Quantity and SI	Quantity and SI Unit		Preferred	Allowable	Get Metr	ic Unit
		SPACE,	** TIME			
Volume, capacity	m ³	cubem	km ³		4.168 182	E+00 ⁽¹⁾
, 1 J		acre-ft	m ³		1.233 489	E+03
				ha∙m	1.233 489	E-01
		m ³	m ³		1.0*	E+00
		cu yd	m ³		7.645 549	E-01
		bbl (42 U.S. gal)	m ³		1.589 873	E-01
		cu ft	m ³		2.831 685	E-02
			dm ³	L	2.831 685	E+01
		U.K. gal	m ³		4.546 092	E-03
		8	dm ³	L	4.546 092	E+00
		U.S. gal	m ³		3.785 412	E-03
		U	dm ³	L	3.785 412	E+00
		liter	dm ³	L	1.0*	E+00
		U.K. qt	dm ³	L	1.136 523	E+00
		U.S. qt	dm ³	L	9.463 529	E-01
		U.S. pt	dm ³	L	4.731 765	E-01
Volume, capacity	m ³	U.K. fl oz	cm ³		2.841 308	E+01
volume, capacity	111	U.S. fl oz	cm ³		2.957 353	E+01
		cu in.	cm ³		1.638 706	E+01 E+01
		mL	cm ³		1.0*	E+01 E+00
Volume/length	m ³ /m	bbl/in.	m^3/m		6.259 342	E+00 E+00
(linear displacement)	111 / 111	bbl/ft	m^3/m		5.216 119	E+00 E-01
(inical displacement)		ft ³ /ft	m^{3}/m		9.290 304*	E-01 E-02
		U.S. gal/ft	m^{3}/m		1.241 933	E 02 E-02
		0.5. gai/ft	dm^3/m	L/m	1.241 933	E+01
Volume/mass	m ³ /kg	see "Density, Spe				L+01
Plane angle	rad	rad	rad	Concentration,	1.0*	E+00
I falle aligie	Tau		rad		1.745 329	$E = 00^{(2)}$
		deg (°)	Tau	0	1.745 529	E=02 E+00
		min (')	rad		2.908 882	E+00 $E-04^{(2)}$
			rad	,	2.908 882 1.0*	E=04 E+00
		sec (")	rad		4.848 137	E+00 $E-06^{(2)}$
		sec (")	rad	"	4.848 137 1.0*	E=00 E+00
Solid angle					1.0*	E+00 E+00
Solid angle Time	sr	Sr million voora	sr Ma		1.0*	E+00 $E+00^{(4)}$
1 11110	S	million years (MY)	Ivia			
		yr	a		1.0*	E+00
		wk	d		7.0*	E+00
		d	d		1.0*	E+00
		hr	h		1.0*	E+00
				min	6.0*	E+01
		min	S		6.0*	E+01
				h	1.666 667	E-02
				min	1.0*	E+00
		S	S		1.0*	E+00
		millimicrosecond	ns		1.0*	E+00

			Metr	ic Unit	Conversion Factor:* Multiply Customary Unit by Factor To	
		Customary	SPE	Other		
Quantity and SI	Unit	Unit	Preferred	Allowable	Get Metric	
		MASS, AMOUN	T OF SUBSTA	NCE		
Mass	kg	U.K. ton	Mg	t	1.016 047	E+00
	C	(long ton)	C			
		U.S. ton	Mg	t	9.071 847	E-01
		(short ton)	C			
		U.K. ton	kg		5.080 235	E+01
		U.S. cwt	kg		4.535 924	E+01
		kg	kg		1.0*	E+00
		lbm	kg		4.535 924	E-01
		oz (troy)	g		3.110 348	E+01
		oz (av)	g		2.834 952	E+01
		g	g		1.0*	E+00
		grain	mg		6.479 891	E+01
		mg	mg		1.0*	E+00
		g	g		1.0*	E+00
Mass/length	kg/m	see "Mechanics"	C			
Mass/area	kg/m^2	see "Mechanics"				
Mass/volume	kg/m ³	see "Density, Sp	ecific Volume,	Concentration,	Dosage"	
Mass/mass	kg/kg	see "Density, Sp				
Amount of substance	mol	lbm mol	kmol	,	4.535 924	E-01
		g mol	kmol		1.0*	E-03
		std m ³	kmol		4.461 58	E-02
		(0°C, 1 atm)				(3, 13)
		std m ³	kmol		4.229 32	E-02
		(15°C, 1 atm)				(3, 13)
		std ft ³	kmol		1.195 3	E-03
		(60°F, 1 atm)				(3, 13)
	CALORIE	TIC VALUE, HEAT,		EAT CAPACI		
Calorific value	J/kg	Btu/lbm	MJ/kg		2.326	Е-03
(mass basis)			kJ/kg	J/g	2.326	E+00
				(kW·h)/kg	g 6.461 112	Е-04
		cal/g	kJ/kg	J/g	4.184*	E+00
		cal/lbm	J/kg		9.224 141	E+00
Calorific value	J/mol	kcal/g mol	kJ/kmol		4.184*	C+03 ⁽
(mole basis)		Btu/lbm mol	MJ/kmol		2.326	E-03(
` '			1 - 4 - 1			

kJ/kmol

2.326

E+00⁽¹³⁾

		Customary		ic Unit Other	Conversion Multiply C Unit by Fa	ustomary
Quantity and SI	Unit	Unit	Preferred	Allowable	Get Metr	
-		C VALUE, HEAT, H				
Calorific value	J/m ³	therm/U.K. gal	MJ/m ³	kJ/dm ³	2.320 80	E+04
(volume basis–			kJ/m ³		2.320 80	E+07
solids and liquids)				$(kW \cdot h)/dm^3$	6.446 660	E+00
		Btu/U.S. gal	MJ/m ³	kJ/dm^3	2.787 163	E-01
		200, 0.0. 80	kJ/m^3	110, 4111	2.787 163	E+02
			110/111	(kW·h)/m ³	7.742 119	E-02
		Btu/U.K. gal	MJ/m ³	kJ/dm^3	2.320 8	E-01
		Diu/O.ix. gui	kJ/m^3	K5/ dill	2.320 8	E+02
			KJ/111	$(kW \cdot h)/m^3$	6.446 660	E-02
		Btu/ft ³	MJ/m ³	kJ/dm^3	3.725 895	E-02 E-02
		Dtu/It	kJ/m^3	KJ/UIII	3.725 895	E+01
			KJ/111	(1-1)/(1-3)		
		kcal/m ³	MI/m ³	(kW·h)/m ³ kJ/dm ³	1.034 971	E-02
		kcal/m	MJ/m^3	KJ/dm [*]	4.184*	E-03
		1/ T	kJ/m^3		4.184*	E-03
		cal/mL	MJ/m^3		4.184*	E+00
~ 1	- 3	ft-lbf/U.S. gal	kJ/m^3	- 1 3	3.581 692	E-01
Calorific value	J/m ³	cal/mL	kJ ³ /m	J/dm ³	4.184*	E+03
(volume basis-		kcal/m ³	kJ/m ³	J/dm^3	4.184*	E+00
gases)		Btu/ft ³	kJ/m ³	J/dm ³	3.725 895	E+01
				$(kW \cdot h)/m^3$	1.034 971	E-02
Specific entropy	J/kg·K	Btu/(lbm-°R)	kJ(kg·K)	J(g·K)	4.186 8*	E+00
		cal/(g-°K)	kJ(kg·K)	J(g·K)	4.184*	E+00
		kcal/(kg-°C)	kJ(kg·K)	J(g·K)	4.184*	E+00
Specific heat	J/kg·K	kW-hr/(kg-°C)	kJ(kg·K)	J(g·K)	3.6*	E+03
capacity		Btu/(lbm-°F)	kJ(kg·K)	J(g·K)	4.186 8*	E+00
(mass basis)		kcal(kg-°C)	kJ(kg·K)	J(g·K)	4.184*	E+00
Molar heat	J/mol·K	Btu/(lbm mol-°F)	kJ		4.186 8*	$E+00^{(13)}$
		· · · · · · · · · · · · · · · · · · ·	(kmol·K)			
capacity		cal/(g mol-°C)	kJ		4.184*	E-00 ⁽¹³⁾
1 5		(8)	(kmol·K)			
		EMPERATURE, PR	ESSURE, VA	CUUM		
Temperature	K	°R	K		5/9	
(absolute)		°K	K		1.0*	E+00
Temperature	Κ	°F	°C		(F-32)/1.8	
(traditional)		°C	°C		1.0*	E+00
Temperature	Κ	°F	Κ	°C	5/9	E+00
(difference)		°C	Κ	°C	1.0*	E+00
Temperature/length	K/m	°F/100 ft	mK/m		1.822 689	E+01
(geothermal gradient)						
Length/temperature	m/K	ft°F	m/K		5.486 4*	E-01
(geothermal step)						
(C						

		Customary	Metr	ic Unit	Conversion I Multiply Cus	stomary
Quantity and S	Quantity and SI Unit		SPE Preferred	Other Allowable	Unit by Fac Get Metric	
	r	TEMPERATURE, PRE	ESSURE. VA	CUUM		
Pressure	Ра	atm (760 mm Hg at	MPa		1.013 25*	Е-01
		0°C or 14.696 (lbf/in. ²)	kPa		1.013 25*	E+02
				bar	1.013 25*	E+00
		bar	MPa		1.0*	E-01
			kPa		1.0*	E+02
				bar	1.0*	E+00
		at (technical atm, kbf/cm ²)	MPa		9.806 65*	E-02
			kPa		9.806 65*	E+01
				bar	9.806 65*	E-01
Pressure	Ра	lbf/in. ² (psi)	MPa		6.894 757	E-03
		u /	kPa		6.894 757	E+00
				bar	6.894 757	E-02
		in. Hg (32°F)	kPa		3.386 38	E+00
		in. Hg (60°F)	kPa		3.376 85	E+00
		in. H ₂ O (39.2°F)	kPa		2.490 82	E-01
		in. $H_2O(60^\circ F)$	kPa		2.488 4	E-01
		Mm Hg (0°C)=torr	kPa		1.333 224	E-01
		$Cm H_2O (4^{\circ}C)$	kPa		9.806 38	E-02
		lbf/ft ² (psf)	kPa		4.788 026	E-02
		μm Hg (0°C)	Ра		1.333 224	E-01
		μbar	Ра		1.0*	E-01
		dyne/cm ²	Ра		1.0*	E-01
Vacuum, draft	Ра	in. Hg (60°F)	kPa		3.376 85	E+00
		in. H ₂ O (39.2°F)	kPa		2.490 82	E-01
		Mm Hg (0°C)=torr	kPa		1.333 224	E-01
		$Cm H_2O (4^{\circ}C)$	kPa		9.806 38	E-02
Liquid heat	m	ft	m		3.048*	E-01
		in.	mm		2.54*	E+01
				cm	2.54*	E+00
Pressure drop/length	Pa/m	psi/ft	kPa/m		2.262 059	E+01
		psi/100 ft	kPa/m		2.262 059	Е-01
		SPECIFIC VOLUME,		ATION, DOS		
Density (gases)	kg/m ³	lbm/ft ³	kg/m^3		1.601 846	E+01
D	1 (3	11 / 17 / 1	g/m^3		1.601 846	E+04
Density (liquids)	kg/m ³	lbm/U.S. gal	kg/m ³	- /. 3	1.198 264	E+02
		11/TTTZ 1	1 / 3	g/cm ³	1.198 264	E-01
		lbm/U.K. gal	kg/m ³	1/1-3	9.997 633	E+01
		11 /Q ³	13	kg/dm ³	9.977 633	E-02
		lbm/ft ³	kg/m ³	. / 3	1.601 846	E+01
		~/~~ ³	13	g/cm ³	1.601 846	E-02
		g/cm ³	kg/m ³	13	1.0*	E+03
		°API	g/cm ³	kg/dm ³	1.0*	E+00
		Ari	g/cm		141.5/(131.5	o⊤ API)

TABLE 1—TABLES OF RECOMMENDED SI UNITS (continued)						
					Conversion F	actor:*
			Metr	ic Unit	Multiply Cus	tomary
		Customary	SPE	Other	Unit by Fact	tor To
Quantity and	SI Unit	Unit	Preferred	Allowable	Get Metric	Unit
	DENSITY, S	SPECIFIC VOLUME,	CONCENTR	ATION, DOSA	AGE	
Density (solids)	kg/m ³	lbm/ft ³	kg/m ³	,	1.601 846	E+01
Specific volume	m ³ /kg	ft ³ /lbm	m ³ /kg		6.242 796	E-02
(gases)	e		m^3/g		6.242 796	E-05
Specific volume	m ³ /kg	ft ³ /lbm	dm ³ /kg		6.242 796	E+01
(liquids)	e	U.K. gal/lbm	dm ³ /kg	cm ³ /g	1.002 242	E+01
· • /		U.S. gal/lbm	dm ³ /kg	cm^{3}/g	8.345 404	E+00
Specific volume	ft ³ /mol	L/g mol	m ³ /kmol	-	1.0*	E+00 (13)
(mole basis)		ft ³ /lbm mol	m ³ /kmol		6.242 796	E-02
Specific volume	m ³ /kg	bbl/U.S. ton	m^3/t		1.752 535	E-01
(clay yield)	in /kg	bbl/U.K. ton	m^3/t		1.564 763	E-01
Yield (shale	m ³ /kg	bbl/U.S. ton	dm^3/t	L/t	1.752 535	E+02
distillation)	iii / iig	bbl/U.K. ton	dm^3/t	L/t	1.564 763	E+02
		U.S. gal/U.S. ton	dm^3/t	L/t	4.172 702	E+00
		U.S. gal/U.K. ton	dm ³ /t	L/t	3.725 627	E+00
Concentration	kg/kg	wt%	kg/kg		1.0*	E-02
(mass/mass)	00		g/kg		1.0*	E+01
· /		wt ppm	mg/kg		1.0*	E+00
Concentration	kg/m ³	lbm/bbl	kg/m ³	g/dm ³	2.853 010	E+00
(mass/volume)	e	g/U.S. gal	kg/m ³	C	2.641 720	E-01
		g/U.K. gal	kg/m ³	g/L	2.199 692	E-01
Concentration	kg/m ³	lbm/1,000 U.S. gal	g/m^3	mg/dm ³	1.198 264	E+02
(mass volume)	8	lbm/1,000 U.K. gal	g/m ³	mg/dm ³	9.977 633	E+01
(grains/U.S. gal	g/m^3	mg/dm ³	1.711 806	E+01
		grains/ft ³	mg/m^3	U	2.288 352	E+03
		lbm/1,000 bbl	g/m ³	mg/dm ³	2.853 010	E+00
		mg/U.S. gal	g/m ³	mg/dm^3	2.641 720	E-01
		grains/100 ft ³	mg/m ³	-	2.288 352	E+01
Concentration	m^3/m^3	bbl/bbl	m^{3}/m^{3}		1.0*	E+00
(volume/volume)		ft^3/ft^3	m^3/m^3		1.0*	E+00
		bbl/acre-ft	m^3/m^3		1.288 923	E-04
				m³/ha∙m	1.288 923	E+00
		vol %	m^3/m^3		1.0*	E-02
		U.K. gal/ft ³	dm ³ /m ³	L/m ³	1.605 437	E+02
		U.S. gal/ft ³	dm^3/m^3	L/m^3	1.336 806	E+02
		mL/U.S. gal	dm^3/m^3	L/m^3	2.641 720	E-01
		mL/U.K. gal	dm^3/m^3	L/m ³	2.199 692	E-01
		vol ppm	cm^3/m^3	-	1.0*	E+00
			dm^3/m^3	L/m ³	1.0*	E-03
		U.K. gal/1,000 bbl	cm^3/m^3		1.859 406	E+01
		U.S. gal/1,000 bbl	cm^{3}/m^{3}		2.380 952	E+01
		U.K. pt/1,000 bbl	cm ³ /m ³		3.574 253	E+00

		Customary	Metri SPE	c Unit Other	Conversion F Multiply Cus Unit by Fac	tomary
Quantity and	SI Unit	Unit	Preferred	Allowable	Get Metric	
	DENSITY, S	SPECIFIC VOLUME,	CONCENTR	ATION, DOSA	GE	
Concentration	mol/m ³	lbm mol/U.S. gal	kmol/m ³	-	1.198 264	E+02
		lbm mol/U.K. gal	kmol/m ³		9.977 633	E+01
		lbm mol/ft ³	kmol/m		1.601 846	E+01
		std ft ³ (60°F, 1 atm)/bbl	kmol/m ³		7.518 18	E-03
Concentration	m ³ /mol	U.S. gal/1,000 std ft ³ (60°F/60°F)	dm ³ /kmol	L/kmol	3.166 93	E+00
(volume/mole)		bbl/million std ft ³ (60°F/60°F)	dm ³ /kmol	L/kmol	1.330 11	Е-01
		FACILITY THROUG	HPUT, CAPA	ACITY		
Throughput	kg/s	million lbm/yr	t/a	Mg/a	4.535 924	E+02
(mass basis)	C	U.K. ton/yr	t/a	Mg/a	1.016 047	E+00
		U.S. ton/yr	t/a	Mg/a	9.071 847	E-01
		U.K. ton/D	t/d	Mg/d	1.016 047	E+00
				t/h, Mg/h	4.233 529	E-02
		U.S. ton/D	t/d		9.071 847	E-01
				t/h, Mg/h	3.779 936	E-02
		U.K. ton/hr	t/h	Mg/h	1.016 047	E+00
		U.S. ton/hr	t/h	Mg/h	9.071 847	E-01
	2.	lbm/hr	kg/h		4.535 924	E-01
Throughput	m ³ /s	bbl/D	t/a		5.803 036	E+01 ⁽⁷⁾
(volume basis)				m ³ /d	1.589 873	E-01
			m ³ /h		6.624 471	E-03
		ft ³ /D	m ³ /d		2.831 685	E-02
		bbl/hr	m ³ /h		1.589 873	E-01
		ft ³ /h	m ³ /h		2.831 685	E-02
		U.K. gal/hr	m ³ /h		4.546 092	E-03
				L/s	1.262 803	E-03
		U.S. gal/hr	m ³ /h		3.785 412	E-03
			2	L/s	1.051 503	E-03
		U.K. gal/min	m ³ /h		2.727 655	E-01
			2	L/s	7.576 819	E-02
		U.S. gal/min	m ³ /h		2.271 247	E-01
				L/s	6.309 020	E-02
Throughput	mol/s	lbm mol/hr	kmol/h		4.535 924	E-01
(mole basis)				kmol/s	1.259 979	E-04 ⁽⁶⁾

	TADLE I—	-TABLES OF RECOM		ric Unit	Conversion Multiply Cu	
		Customary	SPE	Other	Unit by Fac	
Quantity and	SI Unit	Unit	Preferred	Allowable	Get Metri	e Unit
		FLOW	RATE			
Pipeline capacity	m ³ /m	bbl/mile	m ³ /km		9.879 013	E-02
Flow rate	kg/s	U.K. ton/min	kg/s		1.693 412	E+01
(mass basis)	U	U.S. ton/min	kg/s		1.511 974	E+01
· · · ·		U.K. ton/hr	kg/s		2.822 353	E-01
		U.S. ton/hr	kg/s		2.519 958	E-01
		U.K. ton/D	kg/s		1.175 980	E-02
		U.S. ton/D	kg/s		1.049 982	E-02
		million lbm/yr	kg/s		5.249 912	E+02
		U.K. ton/yr	kg/s		3.221 864	E-05
		U.S. ton/yr	kg/s		2.876 664	E-05
		lbm/s	kg/s		4.535 924	E-01
		lbm/min	kg/s		7.559 873	E-03
		lbm/hr	kg/s		1.259 979	E-04
Flow rate	m ³ /s	bbl/D	m ³ /d		1.589 873	E-01
(volume basis)		2	2	L/s	1.840 131	E-03
		ft ³ /D	m ³ /d		2.831 685	E-02
			2	L/s	3.277 413	E-04
		bbl/hr	m ³ /s		4.416 314	E-05
		2	2	L/s	4.416 314	E-02
		ft ³ /hr	m ³ /s		7.865 791	E-06
			2	L/s	7.865 791	E-03
		U.K. gal/hr	dm^3/s	L/s	1.262 803	E-03
		U.S. gal/hr	dm^3/s	L/s	1.051 503	E-03
		U.K. gal/min	dm^3/s	L/s	7.576 820	E-02
		U.S. gal/min	dm^3/s	L/s	6.309 020	E-02
		ft ³ /min	dm^3/s	L/s	4.719 474	E-01
		ft ³ /s	dm ³ /s	L/s	2.831 685	E+01
Flow rate	mol/s	lbm mol/s	kmol/s		4.535 924	E-01 (13)
(mole basis)		lbm mol/hr	kmol/s		1.259 979	E-04 (13)
		million scf/D	kmol/s		1.383 449	E-02
Flow rate/length	kg/s∙m	lbm/(s-ft)	kg/(s·m)		1.488 164	E+00
(mass basis)	2	lbm/(hr-ft)	kg/(s·m)	2	4.133 789	E-04
Flow rate/length	m^2/s	U.K. gal/(min-ft)	m^2/s	$m_{2}^{3}/(s \cdot m)$	2.485 833	E-04
		U.S. gal/(min-ft)	m^2/s	$m^{3}/(s \cdot m)$	2.069 888	E-04
		U.K. gal/(hr-in.)	m^2/s	$m^3/(s \cdot m)$	4.971 667	E-05
		U.S. gal/(hr-in.)	m^2/s	$m_{\gamma}^{3}/(s \cdot m)$	4.139 776	E-05
		U.K. gal/(hr-ft)	m^2/s	$m^{3}/(s \cdot m)$	4.143 055	E-06
		U.S. gal/(hr-ft)	m^2/s	m ³ /(s·m)	3.449 814	E-06
Flow rate/area	kg/s∙m²	$lbm/(s-ft^2)$	$kg/s \cdot m^2$		4.882 428	E+00
(mass basis)		lbm/(hr-ft ²)	kg/s·m ²		1.356 230	E-03

	IADLE I—	ABLES OF RECOMMENDED SI (×	Conversion Factor Multiply Customa	
		Customary	SPE	Other	Unit by Fac	
Quantity and	d SI Unit	Unit	Preferred	Allowable	Get Metric	Unit
		FLOW	RATE			
Flow rate/area	m/s	$ft^3/(s-ft^2)$	m/s	$m^3/(s \cdot m^2)$	3.048*	Е-01
		$ft^3/(min-ft^2)$	m/s	$m^3/(s \cdot m^2)$	5.08*	Е-03
		U.K. gal/(hr-in. ²)	m/s	$m^3/(s \cdot m^2)$	1.957 349	E-03
		U.S. gal/(hr-in. ²)	m/s	$m^3/(s \cdot m^2)$	1.629 833	E-03
		U.K. gal/(min-ft ²)	m/s	$m^3/(s \cdot m^2)$	8.155 621	E-04
		U.S. gal/(min-ft ²)	m/s	$m^3/(s \cdot m^2)$	6.790 972	E-04
		U.K. $gal/(hr-ft^2)$	m/s	$m^3/(s \cdot m^2)$	1.359 270	E-05
		U.S. gal/(hr-ft ²)	m/s	$m^3/(s \cdot m^2)$	1.131 829	E-05
Flow rate/ pressure drop (productivity index)	m ³ /s·Pa	bbl/(D-psi)	m³/(d·kPa)		2.305 916	E-02
		ENERGY, WO	RK, POWER			
Energy, work	J	quad	MJ		1.055 056	E+12
			TJ		1.055 056	E+06
			EJ		1.055 056	E+00
				MW·h	2.930 711	E+08
				GW∙h	2.930 711	E+05
				TW∙h	2.930 711	E+02
		therm	MJ		1.055 056	E+02
			kJ		1.055 056	E+05
				kW∙h	2.930 711	E+01
		U.S. tonf-mile	MJ		1.431 744	E+01
		hp-hr	MJ		2.684 520	E+00
			kJ		2.684 520	E+03
				kW∙h	7.456 999	E-01
		ch-hr or CV-hr	MJ		2.647 796	E+00
			Kj		2.647 796	E+03
				kW∙h	7.354 99	E-01
		kW-hr	MJ		3.6*	E+00
			kJ		3.6*	E+03
		Chu	kJ		1.899 101	E+00
				kW·h	5.275 280	E-04
		Btu	kJ		1.055 056	E+00
				kW·h	2.930 711	E-04
		kcal	kJ		4.184*	E+00
		cal	kJ		4.184*	Е-03
		ft-lbf	kJ		1.344 818	Е-03
		lbf-ft	kJ		1.355 818	Е-03
		J	kJ		1.0*	E-03
		$lbf-ft^2/s^2$	kJ		4.214 011	E-05
		erg	J		1.0*	Е-07

Т	ABLE I—	-TABLES OF RECOM	MENDED SI	UNITS (conti	nued)	
			Metric Unit		Conversion F Multiply Cust	tomary
Quantity and S	I I Init	Customary Unit	SPE Preferred	Other Allowable	Unit by Fact Get Metric	
Quantity and 5	I UIIIt	ENERGY, WOI		Allowable		Unit
Turn a at an anara	T		<i>,</i>		0.006.650*	E+00
Impact energy	J	kgf·m	J		9.806 650*	E+00
W71/1 41.	T /	lbf-ft	J MI/m		1.355 818	E+00
Work/length	J/m	U.S. tonf-mile/ft	MJ/m		4.697 322	E+01
Surface energy	J/m^2	erg/cm^2	mJ/m ² J/cm ²		1.0*	E+00
Specific impact	J/m ²	$kgf \cdot m/cm^2$			9.806 650*	E-00
energy	117	lbf·ft/in. ²	J/cm ²		2.101 522	E-01
Power	W	quad/yr	MJ/a		1.055 056	E+12
			TJ/a		1.055 056	E+06
		1	EJ/a		1.055 056	E+00
		erg/a	TW		3.170 979	E-27
		111 D. 4	GW		3.170 979	E-24
		million Btu/hr	MW		2.930 711	E-01
		ton of refrigeration	kW		3.516 853	E+00
		Btu/s	kW		1.055 056	E+00
		kW	kW		1.0*	E+00
		hydraulic horsepower—hhp	kW		7.460 43	Е-01
		hp (electric)	kW		7.46*	E-01
		hp (550 ft-lbf/s)	kW		7.456 999	E-01
		ch or CV	kW		7.354 99	E-01
		Btu/min	kW		1.758 427	E = 01 E = 02
		ft·lbf/s	kW		1.355 818	E-02
		kcal/hr	W		1.162 222	E+00
		Btu/hr	W		2.930 711	E-01
		ft·lbf/min	W		2.259 697	E-01 E-02
Power/area	W/m ²	$Btu/s \cdot ft^2$	kW/m^2		1.135 653	E+01
I Uwel/alea	VV / 111	$cal/hr \cdot cm^2$	kW/m^2		1.162 222	E-01
		$Btu/hr \cdot ft^2$	kW/m^2		3.154 591	E-02
TT (C) '(1C)						
Heat flow unit—hfu (geothermics)		$\mu cal/s \cdot cm^2$	mW/m ²		4.184*	E+01
Heat release rate,	W/m^2	hp/ft ³	kW/m ³		2.633 414	E+01
mixing power		$cal/(hr \cdot cm^3)$	kW/m ³		1.162 222	E+00
		$Btu/(s \cdot ft^3)$	kW/m^3		3.725 895	E+01
		$Btu/(hr \cdot ft^3)$	kW/m ³		1.034 971	E-02
Heat generation unit—hgu		$cal/(s \cdot cm^3)$	$\mu W/m^3$		4.184*	E+12
(radioactive rocks)						
Cooling duty	W/W	Btu/(bhp-hr)	W/kW		3.930 148	Е-01
(machinery)						
Specific fuel	kg/J	lbm/(hp-hr)	mg/J	kg/MJ	1.689 659	E-01
consumption				kg/(kW·h)	6.082 774	E-01
(mass basis)	2 .	3	. 3.	2.		
Specific fuel	m ³ /J	$m^3/(kW-hr)$	dm ³ /MJ	mm^3/J	2.777 778	E+02
consumption				dm ³ /(kW·h)	1.0*	E+03

		-IABLES OF RECO	Metric	Unit	Conversion Factor:* Multiply Customary	
Quantity and SI	[]]nit	Customary Unit	SPE Preferred	Other Allowable	Unit by Fact Get Metric	
	1 Olin	ENERGY, WO		mowdole	Get Metrie	Onit
(volume basis)		U.S. gal/(hp-hr)	dm ³ /MJ	mm ³ /J	1.410 089	E+00
(volume ousis)		0.5. gui/(iip iii)		$dm^3(kW\cdot h)$	5.076 321	E+00
		U.K. pt/(hp-hr)	dm ³ /MJ	mm ³ /J	2.116 809	E-01
		1 (1)		dm ³ /(kW·h)	7.620 512	E-01
Fuel consumption	m ³ /m	U.K. gal/mile	$dm^{3}/100 km$	L/100 km	2.824 811	E+02
(automotive)		U.S. gal/mile	$dm^{3}/100 km$	L/100 km	2.352 146	E+02
		mile/U.S. gal	km/dm ³	km/L	4.251 437	E-01
		mile/U.K. gal	km/dm ³	km/L	3.540 060	E-01
		MECH	ANICS			
Velocity (linear),	m/s	knot	km/h		1.852*	E+00
speed		mile/hr	km/h		1.609 344*	E+00
		m/s	m/s		1.0*	E+00
		ft/s	m/s	,	3.048*	E-01
				cm/s	3.048*	E+01
		ft/min	m/a	m/ms	3.048* 5.08*	$E - 04^{(8)}$
		10/11111	m/s	cm/s	5.08*	E-03 E-01
		ft/hr	mm/s	011/3	8.466 667	E-01 E-02
		10 111	11111/ 5	cm/s	8.466 667	E-02 E-03
		ft/D	mm/s	•111, 5	3.527 778	E-03
				m/d	3.048*	Е-01
		in.	mm/s		2.54*	E+01
				cm/s	2.54*	E+00
		in./min	mm/s		4.233 333	Е-01
	• /	, .	• /	cm/s	4.233 333	E-02
Velocity (angular)	rad/s	rev/min	rad/s		1.047 198	E-01
		rev/s	rad/s		6.283 185	E+00
Interval transit time	s/m	degree/min s/ft	rad/s s/m	us/m	2.908 882 3.280 840	E-04 E+00 ⁽⁹⁾
Corrosion rate	m/s	in./yr (ipy)	s/m mm/a	μs/m	2.54*	E+00
Corrosion rate	111/5	mil/yr	mm/a		2.54*	E-01 E-02
Rotational	rev/s	rev/s	rev/s		1.0*	E+00
frequency		rev/min	rev/s		1.666 667	E-02
1 5		rev/min	rad/s		1.047 198	E-01
Acceleration	m/s^2	ft/s^2	m/s^2		3.048*	E-01
(linear)		2	2	cm/s^2	3.048*	E+01
		$gal(cm/s^2)$	m/s^2		1.0*	E-02
Acceleration	rad/s ²	rad/s ²	rad/s^2		1.0*	E+00
(rotational)	1 /	rpm/s	rad/s^2		1.047 198	E-01
Momentum	kg∙m/s	lbm·ft/s	kg·m/s		1.382 550	E-01

]	TABLE 1—	TABLES OF RECC	MMENDED SI	UNITS (conti	inued)	
			Metric	e Unit	Conversion Factor:* Multiply Customary Unit by Factor To	
		Customary	SPE	Other		
Quantity and S	SI Unit	Unit	Preferred	Allowable	Get Metric	Unit
		MECH	IANICS			
Force	Ν	U.K. tonf	kN		9.964 016	E+00
		U.S. tonf	kN		8.896 443	E+00
		kgf (kp)	Ν		9.806 650*	E+00
		lbf	Ν		4.448 222	E+00
		Ν	Ν		1.0*	E+00
		pdl	mN		1.382 550	E+02
		dyne	mN		1.0*	E-02
Bending moment,	N∙m	U.S. tonf-ft	kN∙m		2.711 636	E+00 ⁽¹⁰⁾
torque		kgf-m	N∙m		9.806 650*	E+00(10)
-		lbf-ft	N·m		1.355 818	E+00(10)
		lbf-in.	N∙m		1.129 848	E-01(10)
		pdl-ft	N∙m		4.214 011	E-02(10)
Bending moment/	N·m/m	(lbf-ft)/in.	(N·m)/m		5.337 856	E+01(10)
length		(kgf-m)/m	(N·m)/m		9.806 650*	E+00 ⁽¹⁰⁾
		(lbf-in.)/in.	(N·m)/m		4.448 222	E+00 ⁽¹⁰⁾
Elastic moduli	Ра	lbf/in. ²	GPa		6.894 757	E-06
(Young's, shear bulk)	ra	101/111.	Gra		0.894 /3/	E-00
Moment of inertia	kg·m ²	lbm-ft ²	kg·m ²		4.214 011	E-02
Moment of section	m^4	in. ⁴	cm ⁴		4.162 314	E-02 E+01
Section modulus	m^3	cu in.	cm ³		4.162 314 1.638 706	E+01 E+01
Section modulus	111	cu ft	cm ³		1.638 706	E+01 E+04
		cun	CIII	mm ³	2.831 685	E+04 E+04
				m^3	2.831 685	E+04 E-02
Stress	Ра	U.S. tonf/in. ²	MPa	N/mm^2	1.378 951	E-02 E+01
50055	1 a	kgf/mm ²	MPa	N/mm ²	9.806 650*	E+01 E+00
		U.S. $tonf/ft^2$	MPa	N/mm ²	9.800 050	E+00 E-02
		lbf/in. ² (psi)	MPa	N/mm^2	9.370 032 6.894 757	E-02 E-03
		lbf/ft ² (psf)	kPa	11/11111	4.788 026	E 03 E-02
		dyne/cm ²	Pa		4.788 020 1.0*	E 02 E-01
Yield point,		lbf/100 ft ²	Pa		4.788 026	E-01
gel strength		101/100 11	1 a		4.788.020	L 01
(drilling fluid)						
Mass/length	kg/m	lbm/ft	kg/m		1.488 164	E+00
Mass/area	kg/m^2	U.S. ton/ft^2	Mg/m^2		9.764 855	E+00
structural loading,	Kg/III	lbm/ft ²	kg/m^2		4.882 428	E+00
bearing capacity (mass basis)		10111/11	Kg/III		4.002 420	E+00
Coefficient of	m/(m·K)	in./(in°F)	mm/(mm·K)		5.555 556	E-01
thermal expansion	` '	× /	```			
1						

		Customary	Metri SPE		Conversion F Multiply Cus Unit by Fac	tomary
Quantity and S	SI Unit	Unit	Preferred	Allowable	Get Metric	
		TRANSPORT P	ROPERTIES			
Diffusivity	m ² /s	ft ² /s	mm ² /s		9.290304*	E+04
		cm ² /s	mm^2/s		1.0*	E+02
	2	ft ² /hr	mm^2/s		2.580 64*	E+01
Thermal resistance	$(k \cdot m^2)/W$	(°C-m ² ·hr)/kcal	$(K \cdot m^2) kW$		8.604 208	E+02
	2	$(^{\circ}F-ft^{2}hr)/Btu$	(K·m ²)kW		1.761 102	E+02
Heat flux	W/m^2	$Btu/(hr-ft^2)$	kW/m ²		3.154 591	E-03
Thermal conductivity	W/(m·K)	(cal/s-cm ² -°C/cm)	W/(m·K)		4.184*	E+02
		$Btu/(hr-ft^2-°F/ft)$	W/(m·K)	2	1.730 735	E+00
		2		$kJ \cdot m/(h \cdot m^2 K)$		E+00
		$kcal/(hr-m^2-°C/m)$	W/(m·K)		1.162 222	E+00
		Btu/(hr-ft ² -°F/in.)	W/(m·K)		1.442 279	E-01
	_	cal/(hr-cm ² -°C/cm)	W/(m·K)		1.162 222	E-01
Heat transfer coefficient	$W/(m^2 \cdot K)$	cal/(s-cm ² -°C)	$kW/(m^2 \cdot K)$		4.184*	E+01
		Btu/(s-ft ² -°F)	$kW/(m^2 \cdot K)$		2.044 175	E+01
		cal/(hr-cm ² -°C)	$kW/(m^2 \cdot K)$		1.162 222	E-02
		$Btu/(hr-ft^2-°F)$	$kW/(m^2 \cdot K)$		5.678 263	E-03
		_	_	kJ(h·m ² ·K)	2.044 175	E+01
		$Btu/(hr-ft^2-^{\circ}R)$	$kW/(m^2 \cdot K)$		5.678 263	E-03
	2	$kcal/(hr-m^2-°C)$	$kW/(m^2 \cdot K)$		1.162 222	E-03
Volumetric heat	kW/(m ³ ·K)) Btu/(s-ft ³ -°F)	$kW/(m^3 \cdot K)$		6.706 611	E+01
transfer coefficient		Btu/(hr-ft ³ -°F)	$kW/(m^3 \cdot K)$		1.862 947	E-02
Surface tension	N/m	dyne/cm	mN/m		1.0*	E+00
Viscosity	Pa∙s	(lbf-s)/in. ²	Pa∙s	$(N \cdot s)/m^2$	6.894 757	E+03
(dynamic)		$(lbf-s)/ft^2$	Pa∙s	$(N \cdot s)/m^2$	4.788 026	E+01
		(kgf-s)/m ²	Pa∙s	$(N \cdot s)/m^2$	9.806 650*	E+00
		lbm/(ft-s)	Pa·s	$(N \cdot s)/m^2$	1.488 164	E+00
		(dyne-s)/cm ²	Pa∙s	$(N \cdot s)/m^2$	1.0*	E-01
		ср	Pa∙s	$(N \cdot s)/m^2$	1.0*	E-03
	2	lbm/(ft-hr)	Pa·s	$(N\cdot s)/m^2$	4.133 789	E-04
Viscosity	m^2/s	ft ² /s	mm ² /s		9.290 304*	E+04
(kinematic)		in. ² /s	mm ² /s		6.451 6*	E+02
		m ² /hr	mm^2/s		2.777 778	E+02
		cm ² /s	mm^2/s		1.0*	E+02
		ft²/hr	mm ² /s		2.580 64*	E+01
	2	cSt	mm^2/s		1.0*	E+00
Permeability	m^2	darcy	μm^2		9.869 233	E-01 (11)
		millidarcy	μm^2		9.869 233	E-04
				$10^{-3}\mu m^2$	9.869 233	E-01

T	ABLE 1—	TABLES OF RECOM	MMENDED S	I UNITS (conti	inued)	
		Customer		ic Unit	Conversion Factor: Multiply Customar Unit by Factor To	
Quantity and S	[] Init	Customary Unit	SPE Preferred	Other Allowable	Get Metric	
	1 Onit				Get Methe	oint
	~	ELECTRICITY,		М		
Admittance	S	S	S		1.0*	E+00
Capacitance	F	μF	μF		1.0*	E+00
Capacity, storage battery	С	A·hr	kC		3.6*	E+00
Charge density	C/m ³	C/mm ³	C/mm ³		1.0*	E+00
Conductance	S	S	S		1.0*	E+00
		$\Omega(mho)$	S		1.0*	E+00
Conductivity	S/m	S/m	S/m		1.0*	E+00
		Ω/m	S/m		1.0*	E+00
	_	mΩ/m	mS/m		1.0*	E+00
Current density	A/m^2	A/mm^2	A/mm^2		1.0*	E+00
Displacement	C/m^2	C/cm^2	C/cm ²		1.0	E+00
Electric charge	С	С	С		1.0*	E+00
Electric current	А	А	А		1.0*	E+00
Electric dipole	C∙m	C∙m	C∙m		1.0*	E+00
moment						
Electric field	V/m	V/m	V/m		1.0*	E+00
strength						
Electric flux	С	С	С		1.0*	E+00
Electric	C/m^2	C/m^2	C/m^2		1.0*	E+00
polarization						
Electric potential	V	V	V		1.0*	E+00
1		mV	mV		1.0*	E+00
Electromagnetic	$A \cdot m^2$	$A \cdot m^2$	$A \cdot m^2$		1.0*	E+00
moment						
Electromotive	V	V	V		1.0*	E+00
force						
Flux of	С	С	С		1.0*	E+00
displacement						
Frequency	Hz	cycles/s	Hz		1.0*	E+00
Impedance	Ω	Ω	Ω		1.0*	E+00
Interval transit time	s/m	μs/ft	μs/m		3.280 840	E+00
Linear current	A/m	A/mm	A/mm		1.0*	E+00
density						
Magnetic dipole	Wb∙m	Wb∙m	Wb∙m		1.0*	E+00
moment						
Magnetic field	A/m	A/mm	A/mm		1.0*	E+00
strength						
-		oersted	A/m		7.957 747	E+01
		gamma	A/m		7.957 747	E-04
Magnetic flux	Wb	mWb	mWb		1.0*	E+00
Magnetic flux	Т	mT	mT		1.0*	E+00
density						
-		gauss	Т		1.0*	E-04
Magnetic induction	Т	mT	mT		1.0*	E+00
Magnetic moment	$A \cdot m^2$	$A \cdot m^2$	$A \cdot m^2$		1.0*	E+00
C I						

		Metric Unit			Conversion Multiply C	
Quantity and SI Unit		Customary Unit	SPE Other Preferred Allowable		Unit by Factor To Get Metric Unit	
	т	ELECTRICITY		VI	1.04	E + 00
Magnetic	Т	mT	mT		1.0*	E+00
polarization					1.0*	E + 0.0
Magnetic potential difference	А	Α	А		1.0*	E+00
Magnetic vector	Wb/m	Wb/m	Wb/m		1	
potential						
Magnetization	A/m	A/mm	A/mm		1	
Modulus of	S	S	S		1	
admittance						
Modulus of	Ω	Ω	Ω		1	
impedance						
Mutual inductance	Н	Н	Н		1	
Permeability	H/m	μH/m	μH/m		1	
Permeance	Н	Н	Н		1	
Permittivity	F/m	μF/m	μF/m		1	
Potential difference	V	V	V		1	
Quantity of	С	С	С		1	
electricity						
Reactance	Ω	Ω	Ω		1	
Reluctance	H^{-1}	H^{-1}	H^{-1}		1	
Resistance	Ω	Ω	Ω		1	
Resistivity	Ω·m	Ω·cm	Ω·cm		1	
		Ω·m	Ω·m		1	(12)
Self inductance	Н	mH	mH		1	
Surface density of	C/m^2	mC/m^2	mC/m ²		1	
charge						
Susceptance	S	S	S		1	
Volume density of	C/m ³	C/mm ³	C/mm ³		1	
charge						
		ACOUSTICS, LIC	GHT, RADIAT	ION		
Absorbed dose	Gy	rad	Gy		1.0*	E-02
Acoustical energy	J	J	J		1	
Acoustical intensity	W/m^2	W/cm ²	W/m^2		1.0*	E+04

		neoconco, Er	oni, in Dianon		
Absorbed dose	Gy	rad	Gy	1.0*	Е-02
Acoustical energy	J	J	J	1	
Acoustical intensity	W/m^2	W/cm ²	W/m^2	1.0*	E+04
Acoustical power	W	W	W	1	
Sound pressure	N/m ²	N/m^2	N/m^2	1	
Illuminance	lx	footcandle	lx	1.076 391	E+01
Illumination	lx	footcandle	lx	1.076 391	E+01
Irradiance	W/m^2	W/m^2	W/m^2	1	
Light exposure	lx∙s	footcandle·s	lx·s	1.076 391	E+01
Luminance	cd/m ²	cd/m^2	cd/m ²	1	
Luminous efficacy	lm/W	lm/W	lm/W	1	

			Metr	Metric Unit		n Factor:* Customary
		Customary	SPE	Other	Unit by F	actor To
Quantity and SI	Unit	Unit	Preferred	Allowable	Get Met	ric Unit
	AC	COUSTICS, LI	GHT, RADIAT	ION		
Luminous exitance	lm/m ²	lm/m ²	lm/m ²		1	
Luminous flux	lm	lm	lm		1	
Luminous intensity	cd	cd	cd		1	
Quantity of light	ℓm·s	talbot	ℓm·s		1.0*	E+00
Radiance	W/(m ² ⋅sr)	$W/(m^2 \cdot sr)$	$W/(m^2 \cdot sr)$		1	
Radiant energy	J	J	J		1	
Radiant flux	W	W	W		1	
Radiant intensity	W/sr	W/sr	W/sr		1	
Radiant power	W	W	W		1	
Wavelength	m	Å	nm		1.0*	E-01
Capture unit	m^{-1}	10^{-3}cm^{-1}	m^{-1}		1.0*	E+01
				10^{-3}cm^{-1}	1	
		m^{-1}	m^{-1}		1	
Radioactivity		curie	Bq		3.7*	E+10

				Metric Unit		Factor:* stomary
Quantity and SI	Unit	Customary Unit	SPE Preferred	Other Allowable	Unit by Fac Get Metric	ctor To
Capillary Compressibility of reservoir fluid	Pa Pa ⁻¹	ft (fluid) psi ⁻¹	m (fluid) Pa ⁻¹	kPa ⁻¹	3.048* 1.450 377 1.450 377	E-01 E-04 E-01
Corrosion allowance Corrosion rate	m m/s	in. mil/yr (mpy)	mm mm/a		2.54* 2.54*	E+01 E-02
Differential orifice pressure Gas-oil ratio	Pa m ³ /m ³	in. H_2O (at 60°F) scf/bbl	kPa "standard"	cm H ₂ O	2.488 4 2.54* 1.801 175	E-01 E+00 E-01
			m^3/m^3			(1)
Gas rate Geologic time	m ³ /s	scf/D yr	"standard" m ³ /d Ma		2.863 640	E-02
Heat (fluid mechanics)	m	ft	m		3.048*	E-01
Heat exchange rate	W	Btu/hr	kW	cm	3.048* 2.930 711	E+01 E-04
Mobility	m²/Pa·s	d/cp	µm²/mPa∙s	kJ/h µm²/Pa∙s	1.055 056 9.869 233 9.869 233	E+00 E-01 E+02
Net pay thickness Oil rate	m m ³ /s	ft bbl/D short ton/yr	m m ³ /d mg/a	ta	3.048* 1.589 873 9.071 847	E-01 E-01 E-01
Particle size Permeability- thickness	m m ³	micron md-ft	μm md·m	μm ² ⋅m	1.0* 3.008 142	E-04
Pipe diameter (actual)	m	in.	cm		2.54*	E+00
Pressure buildup per cycle	Pa	psi	kPa	mm	2.54* 6.894 757	E+01 E+00 (2)
Productivity index	m ³ /Pa·s	bbl/(psi-D)	m ³ (kPa·d)		2.305 916	E-02
Pumping rate	m ³ /s	U.S. gal/min	m ³ /h	L/s	2.271 247 6.309 020	E-01 E-02
Revolutions per minute	rad/s	rpm	rad/s	210	1.047 198	E-01
Recovery/unit volume (oil)	m ³ /m ³	bbl/(acre-ft)	m ³ /m ³	rad/m m³/ha∙m	6.283 185 1.288 931 1.288 931	E+00 E-04 E+00
Reservoir area	m ²	sq mile acre	km ²	ha	2.589 988 4.046 856	E+00 E-01

TABLE 2—SOME ADDITIONAL APPLICATION STANDARDS

Quantity and SI Unit		Customary Unit	Metric Unit SPE Other Preferred Allowable		Conversion Factor:* Multiply Customary Unit by Factor To Get Metric Unit	
Reservoir volume	m ³	acre-ft	m ³	ha·m	1.233 482 1.233 482	E+03 E-01
Specific productivity index	m ³ /Pa·s·m	bbl/(D-psi-ft)	m ³ /(kPa·d·		7.565 341	E-02 (2)
Surface or interfacial tension in reservoir capillaries	N/m	dyne/cm	mN/m		1.0*	E+00
Torque	N·m	lbf-ft	N∙m		1.355 818	E+00 (4)
Velocity (fluid flow) Vessel diameter	m/s m	ft/s	m/s		3.048*	Е-01
1–100 cm above 100 cm		in. ft	cm m		2.54* 3.048*	E+00 E-01

TABLE 2—SOME ADDITIONAL APPLICATION STANDARDS (continued)

*An asterisk indicates the conversion factor is exact using the numbers shown; all subsequent numbers are zeros.