

SPE Workshop: Adaptive Approach in Integrated Reservoir Modelling and Simulation in the Age of Digitalisation

18 – 19 September 2024 | Kuala Lumpur, Malaysia

Optimizing Project Delivery: Adaptive Modelling Approach for Efficiency with Limited Resources

Izzuddin Jamaludin

Presentation Outline

- 1. Introduction
- 2. Challenges
- 3. Key Solutions
- 4. Summary

Introduction

- ✓ Field K in Sabah
- ✓ Next drilling campaign in 2026
- ✓ Three potential target reservoirs:

Reservoir Group	Sublayer	STOIIP	Production data	No. of wells	Prediction scenario	Active cells
А	A1, A2	Lowest	<10 years	<5	Infill	~0.5 million
В	B1, B2, B3, B4	Medium	<10 years	<5	Infill	~0.5 million
С	C1, C2, C3, C4	Highest	>25 years	>15	Water inj., ESP & Infill	>1 million

Challenges

Volatile job market while many projects coming in / company expansion

- Limited manpower resource / people movement
- Limited software license
- Workstation performance Old spec PC with low spec graphic card
- Given project timeline
 Project sequencing Sabah project masterplan
- Marginal volume and challenging economic multiple development scenario to be evaluated

Lower recoverable with higher risk & uncertainty, and challenging well design

Especially specific module related to HM

Sharing with other ongoing projects across Hibiscus

Key Solutions

- ✓ Phased modelling approach Optimized project manpower & license usage
- ✓ Probabilistic History Matching Enhanced workflow & accelerate HM process
- ✓ Workstation upgrade With better CPU & GPU which provide faster run time
- ✓ Iterative workflow within Subsurface and with other disciplines i.e., Drilling & Completion and Facilities Improve project efficiency

Phased Modelling Approach

X Staff departure

	2023			2024														
Subsurface Activities	٨lı	ßn	ept	ct	٥	ec	Ч	eb	lar	pr	lay	aur	∧ŗ	ßn	ept	ct	20	ec
Optimum no. ofReservoir-Ateam members	٦٢	Ā	Š	0	Z	D	еſ	Ę	2	Ā	2	٦٢	٦٢	Ā	Š	0	Z	
→ Static model building		Iteration period between																
ightarrow Dynamic model input data preparation					st	<u>atic &</u>	<u>k dyn</u>	<u>amıc</u>										
→ History Matching & Prediction																		
Reservoir-B																		
\rightarrow Static model building						×					Up	odate	lates	st				
\rightarrow Dynamic model input data preparation \bigcirc U		t date	a pre	<i>).</i>	7							da	ta					
\rightarrow History Matching & Prediction <i>i.e.</i>		prod	l. — inj	i. — [
Reservoir-C	pres	sure d	data															
\rightarrow Static model building																		
\rightarrow Dynamic model input data preparation																		
→ History Matching & Prediction													×		X			
Combined Milestone Review 1/2/3							One l	licens	e at c	1								
								time										

Defining Uncertainty Parameters

→ Once model is initialized and passed QC i.e., Sw matching, STOIIP consistency and stabilization run

Based on hard data, the upper and lower values are defined – and used as reference across other reservoirs

Parameter	lnitial value	Lower limit	Upper limit		
Perm. Mult.	1	0.4	3.0		
Krwr	0.3	0.2	0.5		
Nog	3	2	4		
OWC	Half-way	ODT	WUT		

Observed consistent trend of bigger Perm-Y global multiplier than Perm-X across all three reservoirs – consistent with paleo-current of depositional history (northeast – southwest direction) Run Tornado (one variable at a time) – select only sensitive parameters for Monte Carlo

Parameters excluded from Monte Carlo

Performing Probabilistic HM

Average HM run time Reservoir C 75 minutes per case

Running Monte Carlo (>150 cases) & ensure selected uncertainty parameters cover the observed data

Run optimization & define objective functions – Qoil, SBHP, WC & Qgas – more weightage on key wells

Select the best HM – utilize available tool to assist in determining best HM case

Finalizing HM Model & Performing Prediction

Optimize NFA → Identify sweet spots for infill placement → Construct creaming curve → Optimize Infill

> Average prediction run time Reservoir C 20 minutes per case

Apply minimal required local adjustment to refine matching at field & well level

Multidiscipline Iterative Workflow & Study Outcomes

Objective	Timeliness	Value				
Meet subsurface deliverables	On schedule	Meet minimum economic threshold				

Summary

- 1. The assisted history matching workflow streamlined the assessment of uncertainty parameters, and together with suitable workstation specification, expedite project timelines
- 2. Sequential phasing of dynamic modeling optimized manpower and license usage, crucial given limited resources and competing demands across other assets / projects
- 3. This study underscores the feasibility of achieving subsurface objectives under resource constraints